机译:基于遗传进化径向基函数网络的钻头侧面磨损预测
Department of Mechanical Engineering, University of California, Berkeley, 94720, CA, USA;
Department of Mechanical Engineering, Indian Institute of Technology Patna, Patna-800013, Bihar, India;
Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur-721 302, West Bengal, India;
Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur-721 302, West Bengal, India;
Department of Mechanical Engineering, Indian Institute of Technology Cuwahati, Cuwahati-781 039, Assam, India;
radial basis function network; genetic algorithm; self growing algorithm; flank wear; drilling;
机译:不同基函数对径向基函数网络在根据电机电流信号预测钻头侧面磨损中的作用
机译:不同基函数对径向基函数网络在根据电动机电流信号预测钻头侧面磨损中的作用
机译:基于反向传播神经网络和径向基函数网络的钻头侧面磨损预测。
机译:通过自适应范围遗传算法使用径向基函数网络的最佳设计(径向基函数网络中半径的确定)
机译:从分子结构预测酶抑制和受体拮抗剂特性,以及开发用于分析抑制剂结合的径向基函数神经网络。
机译:使用径向基函数神经网络的基因组预测遗传值
机译:基于BP神经网络和径向基函数网络的钻后磨损预测。