首页> 外文期刊>Engineering Applications of Artificial Intelligence >Comparison of RBF and MLP neural networks to solve inverse kinematic problem for 6R serial robot by a fusion approach
【24h】

Comparison of RBF and MLP neural networks to solve inverse kinematic problem for 6R serial robot by a fusion approach

机译:RBF与MLP神经网络的融合方法求解6R串行机器人逆运动学问题的比较

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a fusion approach to determine inverse kinematics solutions of a six degree of freedom serial robot is proposed. The proposed approach makes use of radial basis function neural network for prediction of incremental joint angles which in turn are transformed into absolute joint angles with the assistance of forward kinematics relations. In this approach, forward kinematics relations of robot are used to obtain the data for training of neural network as well to estimate the deviation of predicted inverse kinematics solution from the desired solution. The effectiveness of the fusion process is shown by comparing the inverse kinematics solutions obtained for an end-effector of industrial robot moving along a specified path with the solutions obtained from conventional neural network approaches as well as iterative technique. The prominent features of the fusion process include the accurate prediction of inverse kinematics solutions with less computational time apart from the generation of training data for neural network with forward kinematics relations of the robot.
机译:本文提出了一种确定六自由度串行机器人逆运动学解的融合方法。所提出的方法利用径向基函数神经网络来预测增量关节角,然后借助正向运动学关系将其转换为绝对关节角。在这种方法中,机器人的正向运动学关系用于获得训练神经网络的数据,并估计预测的逆向运动学解与期望解的偏差。通过比较为沿指定路径移动的工业机器人末端执行器获得的逆运动学解决方案与从常规神经网络方法以及迭代技术获得的解决方案进行比较,可以证明融合过程的有效性。融合过程的显着特征包括,除了生成具有机器人正向运动学关系的神经网络的训练数据外,还可以用较少的计算时间准确地预测逆向运动学解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号