首页> 外文期刊>Engineering Applications of Artificial Intelligence >Case-based expert system using wavelet packet transform and kernel-based feature manipulation for engine ignition system diagnosis
【24h】

Case-based expert system using wavelet packet transform and kernel-based feature manipulation for engine ignition system diagnosis

机译:基于小波包变换和核特征操纵的案例专家系统对发动机点火系统的诊断

获取原文
获取原文并翻译 | 示例

摘要

Whenever there is any fault in an automotive engine ignition system or changes of an engine condition, an automotive mechanic can conventionally perform an analysis on the ignition pattern of the engine to examine symptoms, based on specific domain knowledge (domain features of an ignition pattern). In this paper, case-based reasoning (CBR) approach is presented to help solve human diagnosis problem using not only the domain features but also the extracted features of signals captured using a computer-linked automotive scope meter. CBR expert system has the advantage that it provides user with multiple possible diagnoses, instead of a single most probable diagnosis provided by traditional network-based classifiers such as multi-layer perceptions (MLP) and support vector machines (SVM). In addition, CBR overcomes the problem of incremental and decremental knowledge update as required by both MLP and SVM. Although CBR is effective, its application for high dimensional domains is inefficient because every instance in a case library must be compared during reasoning. To overcome this inefficiency, a combination of preprocessing methods, such as wavelet packet transforms (WPT), kernel principal component analysis (KPCA) and kernel K-means (KKM) is proposed. Considering the ignition signals captured by a scope meter are very similar, WPT is used for feature extraction so that the ignition signals can be compared with the extracted features. However, there exist many redundant points in the extracted features, which may degrade the diagnosis performance. Therefore, KPCA is employed to perform a dimension reduction. In addition, the number of cases in a case library can be controlled through clustering; KKM is adopted for this purpose. In this paper, several diagnosis methods are also used for comparison including MLP, SVM and CBR. Experimental results showed that CBR using WPT and KKM generated the highest accuracy and fitted better the requirements of the expert system.
机译:每当汽车发动机点火系统出现任何故障或发动机状况发生变化时,汽车技师通常都可以根据特定领域知识(点火模式的域特征)对发动机的点火模式进行分析以检查症状。 。在本文中,提出了基于案例的推理(CBR)方法,以帮助解决人类诊断问题,不仅使用域特征,而且使用计算机关联的汽车范围计捕获的信号提取特征。 CBR专家系统的优势在于,它可以为用户提供多种可能的诊断,而不是由传统的基于网络的分类器(例如多层感知(MLP)和支持向量机(SVM))提供的单个最有可能的诊断。另外,CBR克服了MLP和SVM都要求的增量和递减知识更新的问题。尽管CBR是有效的,但它在高维域中的应用效率低下,因为案例库中的每个实例都必须在推理过程中进行比较。为了克服这种低效率,提出了一种预处理方法的组合,例如小波包变换(WPT),内核主成分分析(KPCA)和内核K均值(KKM)。考虑到示波器所捕获的点火信号非常相似,因此将WPT用于特征提取,以便可以将点火信号与提取的特征进行比较。但是,提取的特征中存在许多冗余点,这可能会降低诊断性能。因此,采用KPCA来进行尺寸减小。此外,案例库中的案例数可以通过聚类控制。为此采用了KKM。在本文中,还使用了几种诊断方法进行比较,包括MLP,SVM和CBR。实验结果表明,使用WPT和KKM的CBR产生了最高的准确性,并且更好地满足了专家系统的要求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号