首页> 外文期刊>Expert Systems with Application >Engine ignition signal diagnosis with Wavelet Packet Transform and Multi-class Least Squares Support Vector Machines
【24h】

Engine ignition signal diagnosis with Wavelet Packet Transform and Multi-class Least Squares Support Vector Machines

机译:小波包变换和多类最小二乘支持向量机的发动机点火信号诊断

获取原文
获取原文并翻译 | 示例

摘要

Engine ignition pattern analysis is one of the trouble-diagnosis methods for automotive gasoline engines. Based on the waveform of the ignition pattern, the mechanic guesses what may be the potential malfunctioning parts of an engine with his/her experience and handbooks. However, this manual diagnostic method is imprecise because many ignition patterns are very similar. Therefore, a diagnosis may need many trials to identify the malfunctioning parts. Meanwhile the mechanic needs to disassemble and assemble the engine parts for verification. To tackle this problem, Wavelet Packet Transform (WPT) is firstly employed to extract the features of the ignition pattern. With the extracted features, a statistics over the frequency subbands of the pattern can then be produced, which can be used by Multi-class Least Squares Support Vector Machines (MCLS-SVM) for engine fault classification. With the newly proposed classification system, the number of diagnostic trials can be reduced. Besides, MCLS-SVM is also compared with a typical classification method, Multi-layer Perceptron (MLP). Experimental results show that MCLS-SVM produces higher diagnostic accuracy than MLP.
机译:发动机点火模式分析是汽车汽油发动机故障诊断方法之一。根据点火模式的波形,技师根据他/她的经验和手册来猜测发动机的潜在故障部件。但是,这种手动诊断方法不精确,因为许多点火模式非常相似。因此,诊断可能需要进行多次尝试才能识别出故障部件。同时,技工需要拆卸和组装发动机零件以进行验证。为了解决这个问题,首先采用小波包变换(WPT)提取点火模式的特征。利用所提取的特征,可以生成关于模式的频率子带的统计信息,该统计信息可以由多类最小二乘支持向量机(MCLS-SVM)用于发动机故障分类。使用新提出的分类系统,可以减少诊断试验的数量。此外,还将MCLS-SVM与典型的分类方法多层感知器(MLP)进行了比较。实验结果表明,MCLS-SVM的诊断准确性高于MLP。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号