首页> 外文期刊>Engineering Applications of Artificial Intelligence >A neural network model for solving convex quadratic programming problems with some applications
【24h】

A neural network model for solving convex quadratic programming problems with some applications

机译:解决凸二次规划问题的神经网络模型及其应用

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a capable neural network for solving strictly convex quadratic programming (SCQP) problems with general linear constraints. The proposed neural network model is stable in the sense of Lyapunov and can converge to an exact optimal solution of the original problem. A block diagram of the proposed model is also given. Several applicable examples further show the correctness of the results and the good performance of the model.
机译:本文提出了一种能够解决具有一般线性约束的严格凸二次规划(SCQP)问题的强大神经网络。所提出的神经网络模型在Lyapunov的意义上是稳定的,并且可以收敛到原始问题的精确最优解。还给出了所提出模型的框图。几个适用的例子进一步说明了结果的正确性和模型的良好性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号