首页> 外文学位 >Non-convex Quadratically Constrained Quadratic Programming: Hidden Convexity, Scalable Approximation and Applications
【24h】

Non-convex Quadratically Constrained Quadratic Programming: Hidden Convexity, Scalable Approximation and Applications

机译:非凸二次约束二次规划:隐凸性,可扩展近似和应用

获取原文
获取原文并翻译 | 示例

摘要

Quadratically Constrained Quadratic Programming (QCQP) constitutes a class of computationally hard optimization problems that have a broad spectrum of applications in wireless communications, networking, signal processing, power systems, and other areas. The QCQP problem is known to be NP--hard in its general form; only in certain special cases can it be solved to global optimality in polynomial-time. Such cases are said to be convex in a hidden way, and the task of identifying them remains an active area of research. Meanwhile, relatively few methods are known to be effective for general QCQP problems. The prevailing approach of Semidefinite Relaxation (SDR) is computationally expensive, and often fails to work for general non-convex QCQP problems. Other methods based on Successive Convex Approximation (SCA) require initialization from a feasible point, which is NP-hard to compute in general.;This dissertation focuses on both of the above mentioned aspects of non-convex QCQP. In the first part of this work, we consider the special case of QCQP with Toeplitz-Hermitian quadratic forms and establish that it possesses hidden convexity, which makes it possible to obtain globally optimal solutions in polynomial-time. The second part of this dissertation introduces a framework for efficiently computing feasible solutions of general quadratic feasibility problems. While an approximation framework known as Feasible Point Pursuit-Successive Convex Approximation (FPP-SCA) was recently proposed for this task, with considerable empirical success, it remains unsuitable for application on large-scale problems. This work is primarily focused on speeding and scaling up these approximation schemes to enable dealing with large-scale problems. For this purpose, we reformulate the feasibility criteria employed by FPP-SCA for minimizing constraint violations in the form of non-smooth, non-convex penalty functions. We demonstrate that by employing judicious approximation of the penalty functions, we obtain problem formulations which are well suited for the application of first-order methods (FOMs). The appeal of using FOMs lies in the fact that they are capable of efficiently exploiting various forms of problem structure while being computationally lightweight. This endows our approximation algorithms the ability to scale well with problem dimension. Specific applications in wireless communications and power grid system optimization considered to illustrate the efficacy of our FOM based approximation schemes. Our experimental results reveal the surprising effectiveness of FOMs for this class of hard optimization problems.
机译:二次约束二次规划(QCQP)构成了一类计算困难的优化问题,在无线通信,网络,信号处理,电力系统和其他领域中有着广泛的应用。 QCQP问题被认为是NP -一般而言很难解决。只有在某些特殊情况下,才能在多项式时间内将其求解为全局最优。据说这种情况是隐藏的,是凸的,而识别它们的任务仍然是研究的活跃领域。同时,已知相对较少的方法对一般的QCQP问题有效。半定松弛(SDR)的流行方法在计算上是昂贵的,并且通常无法解决一般的非凸QCQP问题。其他基于连续凸逼近法(SCA)的方法都需要从可行的角度进行初始化,这通常很难进行NP计算。;本文主要针对非凸QCQP的上述两个方面。在本文的第一部分中,我们考虑具有Toeplitz-Hermitian二次形式的QCQP的特殊情况,并确定它具有隐藏的凸性,这使得有可能在多项式时间内获得全局最优解。本文的第二部分介绍了一个有效地计算一般二次可行性问题可行解的框架。尽管最近针对此任务提出了一种称为可行点追踪-成功凸逼近(FPP-SCA)的逼近框架,并取得了可观的经验成功,但它仍然不适用于大规模问题。这项工作主要集中在加快和扩大这些近似方案以解决大规模问题上。为此,我们以非平滑,非凸罚函数的形式,重新制定了FPP-SCA用来最小化约束违规的可行性标准。我们证明,通过使用惩罚函数的明智近似,我们获得了非常适合一阶方法(FOM)应用的问题公式。使用FOM的吸引力在于,它们既可以有效地利用各种形式的问题结构,又可以减轻计算量。这使我们的近似算法能够很好地缩放问题维度。考虑了在无线通信和电网系统优化中的特定应用,以说明我们基于FOM的近似方案的功效。我们的实验结果表明,FOM对于此类硬优化问题具有惊人的有效性。

著录项

  • 作者

    Konar, Aritra.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 95 p.
  • 总页数 95
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:36:41

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号