首页> 外文期刊>Neurocomputing >A Dual Recurrent Neural Network-based Hybrid Approach for Solving Convex Quadratic Bi-Level Programming Problem
【24h】

A Dual Recurrent Neural Network-based Hybrid Approach for Solving Convex Quadratic Bi-Level Programming Problem

机译:一种基于双重复发性神经网络的混合方法,用于解决凸二次双级编程问题的求解

获取原文
获取原文并翻译 | 示例

摘要

The current paper presents a neural network-based hybrid strategy that combines a Genetic Algorithm (GA) and a Dual Recurrent Neural Network (DRNN) for efficiently and accurately solving the quadratic -Bi-level Programming Problem (BLPP). In this model, the GA is used to handle the upper-level decision problem by choosing desirable solution candidates and passing them to the lower-level problem. Sub-sequently, in the lower-level, the parameterized-DRNN is used to determine possible optimal solutions. This combination offers several benefits such as being a parallel computing structure, the RNN offers faster convergence to the optimum for the lower-level decision problem and it also helps to quickly and accurately determining the global optimal. Moreover, the GA can quickly reach the global optima and can search without becoming stuck to the local optimal. Additionally, by choosing desirable initialization of parameters, the proposed algorithm reaches the optimum with higher accuracy. Apart from that, there are still a few utilizations of hybrid NN-based methods for solving BLPPs. Hence, we believe the proposed algorithm will contribute to solving quadratic-BLPPs involved in various engineering, management, and finance applications. The accuracy and efficiency of the proposed method have been found better than the existing and widely used approaches, while doing experimental verification using four well-known examples used in prior works. (C) 2020 Elsevier B.V. All rights reserved.
机译:本文提出了一种基于神经网络的混合策略,其结合了遗传算法(GA)和双反复性神经网络(DRNN),以有效准确地解决了二次 - 级编程问题(BLPP)。在该模型中,GA用于通过选择所需的解决方案候选并将其传递给较低级别​​的问题来处理上层决策问题。在较低级别进行分级,参数化-DRNN用于确定可能的最佳解决方案。该组合提供了多种优势,例如并行计算结构,RNN提供更快的收敛到较低级别决策问题的最佳状态,并且还有助于快速准确地确定全球最佳。此外,GA可以快速达到全局最优,并且可以在不被困到当地最佳的情况下搜索。另外,通过选择参数的理想初始化,所提出的算法以更高的精度达到最佳选择。除此之外,仍有一些用于求解BLPP的混合NN的方法。因此,我们认为该算法将有助于解决各种工程,管理和财务应用中涉及的二次模型。已经比现有和广泛使用的方法更好地发现了所提出的方法的准确性和效率,同时使用先前作品中使用的四个公知的示例进行实验验证。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号