首页> 外文期刊>Engineering Applications of Artificial Intelligence >An evolutionary approach with surrogate models and network science concepts to design optical networks
【24h】

An evolutionary approach with surrogate models and network science concepts to design optical networks

机译:一种具有替代模型和网络科学概念的演进方法来设计光网络

获取原文
获取原文并翻译 | 示例

摘要

Physical topology design of optical networks is frequently accomplished by using evolutionary approaches. However, fitness evaluation for this type of problems is time consuming and the overall optimization process presents a huge execution time. In this paper we propose a new method that uses a multi-objective evolutionary approach to handle the design of all-optical networks. We focused on the simultaneous optimization of the network topology and the device specifications in order to minimize both the capital expenditure of the network and the network performance. Our method uses surrogate models to accelerate the fitness evaluation and a novel network generative model based on preferential attachment to generate the seeds for the evolutionary process. Our approach can provide high quality solutions with a very small execution time when compared to the previous approaches. In order to assess our proposal we performed a set of simulations aiming to analyze the convergence ability and the diversity of the generated solutions for scenarios considering uniform and non-uniform traffic matrices. From our results, we obtained an evolutionary approach that presents better solutions than previous proposals for all analyzed scenarios. Our proposal presents an execution time that is up to 84% and 88% lower than the execution time needed by the previous approaches for uniform and non-uniform traffic, respectively.
机译:光网络的物理拓扑设计通常是通过使用进化方法来完成的。但是,针对此类问题的适应性评估非常耗时,并且整个优化过程会占用大量执行时间。在本文中,我们提出了一种使用多目标进化方法来处理全光网络设计的新方法。我们专注于同时优化网络拓扑和设备规格,以最小化网络的资本支出和网络性能。我们的方法使用代理模型来加快适应性评估,并使用基于优先附件的新型网络生成模型来生成用于进化过程的种子。与以前的方法相比,我们的方法可以以极短的执行时间提供高质量的解决方案。为了评估我们的建议,我们进行了一组模拟,旨在分析考虑统一和非统一流量矩阵的方案的收敛能力和生成的解决方案的多样性。从我们的结果中,我们获得了一种进化的方法,该方法为所有已分析的场景提供了比以前的建议更好的解决方案。我们的建议提出的执行时间分别比以前的统一和非统一流量方法所需的执行时间低84%和88%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号