首页> 外文期刊>Engineering Applications of Artificial Intelligence >Affine parallel distributed compensator design for affine fuzzy systems via fuzzy Lyapunov function
【24h】

Affine parallel distributed compensator design for affine fuzzy systems via fuzzy Lyapunov function

机译:基于模糊Lyapunov函数的仿射模糊系统仿射并行分布式补偿器设计

获取原文
获取原文并翻译 | 示例

摘要

This paper develops a novel stability analysis and robust controller design method for affine fuzzy systems. The emphasis of the paper is to present more relaxed stability conditions based on nonquadratic fuzzy Lyapunov function and affine parallel distributed compensation. At first, diffeo-morphic transformations are used to treat more general class of nonlinear systems in a unified manner. Then, by introducing slack matrices, the Lyapunov matrices are decoupled from the feedback gain matrices and controller affine terms which lead to eliminate the structural constraints of Lyapunov matrices and consequently reduces the conservativeness of the proposed approach. Because of the bias terms, the stabilization conditions are obtained in terms of bilinear matrix inequalities. A nonsingular state transformation together with using the S-procedure and also slack variables lead to derive the stabilization conditions in the formulation of linear matrix inequalities which can be solved by convex optimization techniques. Moreover, H_∞ controller is used to reject the disturbances. Finally, the merit and applicability of the proposed approach are demonstrated via comparative numerical and industrial case studies.
机译:本文提出了一种仿射模糊系统的新型稳定性分析和鲁棒控制器设计方法。本文的重点是提出基于非二次模糊Lyapunov函数和仿射并行分布补偿的更宽松的稳定性条件。首先,用微分-变形变换以统一的方式处理更一般的非线性系统。然后,通过引入松弛矩阵,将Lyapunov矩阵与反馈增益矩阵和控制器仿射项解耦,从而消除了Lyapunov矩阵的结构约束,从而降低了所提出方法的保守性。由于存在偏差项,因此根据双线性矩阵不等式获得了稳定条件。非奇异状态变换与使用S过程以及松弛变量一起,可以得出线性矩阵不等式公式化中的稳定条件,这可以通过凸优化技术来解决。此外,H_∞控制器用于抑制干扰。最后,通过比较数值和工业案例研究证明了该方法的优点和适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号