首页> 外文期刊>Engineering analysis with boundary elements >A meshless generalized finite difference method for solving shallow water equations with the flux limiter technique
【24h】

A meshless generalized finite difference method for solving shallow water equations with the flux limiter technique

机译:一种耦合限制器技术求解浅水方程的无比广义有限差分方法

获取原文
获取原文并翻译 | 示例

摘要

In this study, a novel meshless stable numerical solver is proposed to solve the non-conservative form of shallow water equations. Since they form a hyperbolic system of equations, discontinuous solutions are allowed to transmit during the simulation. The generalized finite difference-split coefficient matrix method, recently proposed, is applied and improved using the flux limiter to eliminate the possible-appearing numerical oscillations. In the proposed scheme, the split-coefficient matrix method is adopted to convert the shallow water equations to the characteristic form. Then, the generalized finite difference method and the second-order Runge-Kutta method are employed for spatial and temporal discretization, respectively. The upwinding spatial derivatives can be approximated at every node using the half-disk shape of the star and generalized finite difference method. Applying the flux limiter technique, the expressions can automatically switch the proper discrete order when facing discontinuous solutions. Although the limiter function required the derivatives of different orders, the generalized finite difference method can solve these necessary expressions using the first- and second-order Tayler series. Several numerical examples are provided to demonstrate the capability of the proposed scheme, and the results are compared with other numerical schemes to show the effectiveness of the proposed generalized finite difference-flux limiter method.
机译:在该研究中,提出了一种新型无网格稳定数值求解器,以解决非保守形式的浅水方程。由于它们形成了方程的双曲线系统,因此允许在模拟期间传输不连续的解决方案。最近提出的广义有限差分系数矩阵方法使用通量限制器应用和改进,以消除可能出现的数值振荡。在所提出的方案中,采用分裂系数矩阵方法将浅水方程转换为特征形态。然后,分别用于分别用于空间和时间离散化的广义有限差分方法和二阶跑搏方法。使用星形和广义有限差分方法的半磁盘形状,可以在每个节点上近似upwinding空间衍生物。应用磁通限制器技术,在面向不连续的解决方案时,表达式可以自动切换正确的离散订单。虽然限制器功能需要不同订单的衍生物,但是,普遍的有限差分方法可以使用第一和二阶泰勒系列来解决这些必要的表达式。提供了几个数值示例以证明所提出的方案的能力,并将结果与​​其他数值方案进行比较,以显示所提出的广义有限差分助条状符号方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号