首页> 外文期刊>Emerging Topics in Computing, IEEE Transactions on >ClubCF: A Clustering-Based Collaborative Filtering Approach for Big Data Application
【24h】

ClubCF: A Clustering-Based Collaborative Filtering Approach for Big Data Application

机译:ClubCF:基于集群的大数据应用协同过滤方法

获取原文
获取原文并翻译 | 示例

摘要

Spurred by service computing and cloud computing, an increasing number of services are emerging on the Internet. As a result, service-relevant data become too big to be effectively processed by traditional approaches. In view of this challenge, a clustering-based collaborative filtering approach is proposed in this paper, which aims at recruiting similar services in the same clusters to recommend services collaboratively. Technically, this approach is enacted around two stages. In the first stage, the available services are divided into small-scale clusters, in logic, for further processing. At the second stage, a collaborative filtering algorithm is imposed on one of the clusters. Since the number of the services in a cluster is much less than the total number of the services available on the web, it is expected to reduce the online execution time of collaborative filtering. At last, several experiments are conducted to verify the availability of the approach, on a real data set of 6225 mashup services collected from ProgrammableWeb.
机译:在服务计算和云计算的刺激下,Internet上出现了越来越多的服务。结果,与服务相关的数据变得太大而无法通过传统方法进行有效处理。针对这一挑战,本文提出了一种基于聚类的协同过滤方法,其目的是在相同的聚类中招募相似的服务以协同推荐服务。从技术上讲,此方法大约分为两个阶段。在第一阶段,将可用服务按逻辑划分为小规模集群,以进行进一步处理。在第二阶段,将协作过滤算法强加到一个集群上。由于群集中的服务数量远远少于Web上可用服务的总数,因此可以减少协作过滤的在线执行时间。最后,在从ProgrammableWeb收集的6225个mashup服务的真实数据集上,进行了一些实验以验证该方法的可用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号