首页> 外文会议>The Sixteenth IEEE International Conference on Computational Science and Engineering >Clustering-Based Collaborative Filtering Approach for Mashups Recommendation over Big Data
【24h】

Clustering-Based Collaborative Filtering Approach for Mashups Recommendation over Big Data

机译:大数据混搭推荐的基于聚类的协同过滤方法

获取原文
获取原文并翻译 | 示例

摘要

Spurred by services computing and Web 2.0, more and more mashups are emerging on the Internet. The overwhelming mashups become too large to be effectively recommended by traditional methods. In view of this challenge, we propose a clustering-based collaborative filtering approach for mashup recommendation over big data. This approach mainly divided into two phases: clustering and collaborative filtering. By using clustering techniques, the data size is reduced so that the computation time of collaborative filtering algorithm is decreased significantly. Several experiments are done to verify the efficient of the proposed approach at the end of this paper.
机译:在服务计算和Web 2.0的推动下,Internet上出现了越来越多的混搭。压倒性的混搭变得太大而无法通过传统方法有效地推荐。鉴于这一挑战,我们提出了一种基于聚类的协同过滤方法,用于大数据上的mashup推荐。该方法主要分为两个阶段:聚类和协作过滤。通过使用聚类技术,减少了数据大小,从而大大减少了协同过滤算法的计算时间。在本文结尾处进行了一些实验,以验证所提方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号