首页> 外文期刊>Emerging Topics in Computing, IEEE Transactions on >Vehicle-Assist Resilient Information and Network System for Disaster Management
【24h】

Vehicle-Assist Resilient Information and Network System for Disaster Management

机译:用于灾害管理的车辆辅助弹性信息和网络系统

获取原文
获取原文并翻译 | 示例

摘要

After big disasters, a damaged area can be out of contact because of severe damage of existing network infrastructures. Meanwhile, high demands for network connections to the disaster area will arise to collect damage information and disseminate rescue instructions. In this paper, we design a vehicle-assist resilient information and network system for disaster management, despite of the Internet unavailability. It contains three main components: (1) smartphone apps that provide functions of SOS reporting, life and medical resources request/provision, and safe road navigation; (2) mobile stations that assist data exchange between smartphone apps and servers; (3) geo-distributed servers that collect user data, conduct distributed data analysis, and make disaster management decisions. Since the vehicle-assist network is critical to connect isolated smartphones and servers, we continue to study the scheduling problem of mobile stations. Given a number of disaster management tasks, such as sensing, information collection, and message dissemination, we propose online algorithms that schedules mobile stations for disaster management tasks with the objective of maximizing the total weight of finished tasks, without any knowledge of future task arrivals. We derive the competitive ratio of our proposed algorithms and conduct extensive simulations for performance evaluation.
机译:大灾难发生后,由于现有网络基础架构的严重损坏,受损区域可能无法联系。同时,对于收集灾害信息和发布救援指令的网络连接到灾区的要求很高。尽管互联网不可用,我们还是在本文中设计了用于灾难管理的车辆辅助弹性信息和网络系统。它包含三个主要组件:(1)提供SOS报告,生命和医疗资源请求/提供以及安全道路导航功能的智能手机应用程序; (2)协助智能手机应用程序和服务器之间进行数据交换的移动台; (3)地理分布式服务器,用于收集用户数据,进行分布式数据分析并做出灾难管理决策。由于车辆辅助网络对于连接孤立的智能手机和服务器至关重要,因此我们将继续研究移动台的调度问题。考虑到许多灾难管理任务,例如感知,信息收集和消息传播,我们提出了在线算法,该算法可调度移动台执行灾难管理任务,目的是最大化已完成任务的总权重,而无需任何未来任务到达的知识。我们得出了我们提出的算法的竞争比,并对性能评估进行了广泛的仿真。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号