首页> 外文期刊>Emerging and Selected Topics in Circuits and Systems, IEEE Journal on >Oscillatory Neural Networks Based on TMO Nano-Oscillators and Multi-Level RRAM Cells
【24h】

Oscillatory Neural Networks Based on TMO Nano-Oscillators and Multi-Level RRAM Cells

机译:基于TMO纳米振荡器和多层RRAM单元的振荡神经网络

获取原文
获取原文并翻译 | 示例

摘要

In massively parallel computational tasks, such as pattern recognition, conventional computing architectures have insufficient power efficiency for energy constrained environments. This has made alternative architectures, such as neuromorphic computing, increasingly attractive. Oscillatory neural networks (ONNs) are one promising architecture, but efficient hardware implementations have been limited by shortcomings in CMOS technology, specifically in the efficient implementation of oscillators and synaptic weights. The authors have recently demonstrated that metal-oxide based resistive switching (RRAM) structures can be engineered to create low-power, scalable, voltage-controlled oscillators that utilize inherent meta-stability in the device. This work proposes an RRAM-based ONN that couples oscillatory “neurons” through weighted “synapses” using oscillator phase as the state-variable. This paper demonstrates a robust architecture using only a few logic gates per neuron to implement phase initialization and locking of these oscillators, and demonstrate their capability to identify stored patterns from noisy inputs. Using measured characteristics of RRAMs as oscillators and programmable resistors, compact models are derived and used to simulate both an 8-neuron and 20-neuron network.
机译:在诸如模式识别之类的大规模并行计算任务中,常规计算体系结构对于能量受限的环境而言功率效率不足。这使得诸如神经形态计算之类的替代体系结构变得越来越有吸引力。振荡神经网络(ONN)是一种很有前途的体系结构,但是有效的硬件实现受到CMOS技术的缺点的限制,特别是在振荡器和突触权重的有效实现方面。作者最近证明,可以对基于金属氧化物的电阻开关(RRAM)结构进行设计,以创建利用器件固有的亚稳定性的低功耗,可扩展,压控振荡器。这项工作提出了一个基于RRAM的ONN,它使用振荡器相位作为状态变量,通过加权“突触”耦合振荡“神经元”。本文展示了一个健壮的架构,每个神经元仅使用几个逻辑门来实现这些振荡器的相位初始化和锁定,并展示了它们从嘈杂的输入中识别存储模式的能力。利用RRAM的测量特性作为振荡器和可编程电阻器,可以推导出紧凑模型并用于仿真8神经元和20神经元网络。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号