机译:基于RRAM的神经网络的双向模拟电导调制
Stanford University Stanford CA USA;
Stanford University Stanford CA USA;
Stanford University Stanford CA USA;
Stanford University Stanford CA USA;
Stanford University Stanford CA USA;
GigaDevice Semiconductor Inc. San Jose CA USA;
The University of Texas at San Antonio San Antonio TX USA;
Stanford University Stanford CA USA;
Stanford University Stanford CA USA;
Stanford University Stanford CA USA;
Stanford University Stanford CA USA;
Modulation; Neural networks; Random access memory; Programming; Hardware; Heating systems; Switches;
机译:模拟网络编码双向中继的差分调制
机译:TIME:基于RRAM的深度神经网络的内存中训练架构
机译:时间:基于RRAM的深神经网络的内存训练架构
机译:NeuADC:基于神经网络的基于RRAM的可合成模数转换,具有可重新配置的量化支持
机译:强大的网络:神经网络基于自然梯度的量化噪声和模拟计算噪声鲁棒
机译:通过均质模拟电导量化提高忆阻神经网络的识别精度
机译:用于模拟网络编码的双向中继的差分调制