首页> 外文期刊>Electron Devices, IEEE Transactions on >Bidirectional Analog Conductance Modulation for RRAM-Based Neural Networks
【24h】

Bidirectional Analog Conductance Modulation for RRAM-Based Neural Networks

机译:基于RRAM的神经网络的双向模拟电导调制

获取原文
获取原文并翻译 | 示例

摘要

Increasing computation demand of machine learning (ML) applications (recommender system, image classification, speech recognition, and so on) calls for the development of specialized hardware for ML and neuromorphic computing. New memories, such as resistive random access memory (RRAM), can be used to store weights of neural networks and to accelerate matrix multiplication, the dominant operation in neural networks. One of the key challenges for RRAM-based neural networks is to achieve bidirectional analog conductance modulation for online training. This article provides a programming scheme (SRA: small RESET voltage amplitude and appropriate SET voltage) to achieve bidirectional analog conductance modulation of RRAM devices. We find that both abrupt and gradual SET can be obtained for the same device. The controlling parameters for modulating the gradual SET behavior are the SET voltage and the local device temperature. We suggest that the filament morphology before SET may be the key to understanding this phenomenon; gradual SET is obtained when the filaments have a single-layer gap in the RESET state, and abrupt SET is obtained when the filaments have a multilayer gap in the RESET state.
机译:增加机器学习的计算需求(ML)应用程序(推荐系统,图像分类,语音识别等)呼吁开发ML和神经形态计算的专用硬件。新的存储器,例如电阻随机存取存储器(RRAM),可用于存储神经网络的权重,并加速矩阵乘法,神经网络中的主导操作。基于RRAM的神经网络的关键挑战之一是实现用于在线培训的双向模拟电导调制。本文提供了一种编程方案(SRA:小型复位电压幅度和适当的设定电压),以实现RRAM器件的双向模拟电导调制。我们发现可以获得突然和渐变的集合,以获得同一设备。用于调制逐渐设定行为的控制参数是设定电压和本地设备温度。我们建议设定前的灯丝形态可能是了解这种现象的关键;当长丝在复位状态下具有单层间隙时获得逐渐设置,并且当长丝具有复位状态的多层间隙时获得突变集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号