首页> 外文期刊>IEEE Transactions on Electron Devices >Modeling and Significance of Fringe Capacitance in Nonclassical CMOS Devices With Gate-Source/Drain Underlap
【24h】

Modeling and Significance of Fringe Capacitance in Nonclassical CMOS Devices With Gate-Source/Drain Underlap

机译:具有栅极-源极/漏极重叠的非经典CMOS器件中边缘电容的建模及其意义

获取原文
获取原文并翻译 | 示例

摘要

Parasitic gate-source/drain (G-S/D) fringe capacitance in nonclassical nanoscale CMOS devices, e.g., double-gate (DG) MOSFETs, is shown, using two-dimensional numerical simulations, to be very significant, gate bias-dependent, and substantially reduced by a well-designed G-S/D underlap. Analytical modeling of the outer and inner components of the fringe capacitance is developed and verified by the numerical simulations; a BOX-fringe component is modeled for single-gate fully depleted silicon-on-insulator MOSFETs. With the new modeling implemented in UFDG, our process/physics-based generic compact model for DG MOSFETs, UFDG/Spice3 shows how nanoscale DG CMOS speed is severely affected by the fringe capacitance and how this effect can be moderated by an optimal underlap, which yields a good tradeoff between the parasitic capacitance and the S/D resistance.
机译:使用二维数值模拟显示,非经典纳米级CMOS器件(例如双栅极(DG)MOSFET)中的寄生栅极-源极/漏极(GS / D)边缘电容非常重要,与栅极偏置有关,并且设计精良的GS / D重叠大大减少了。通过数值模拟建立并验证了边缘电容的内部和外部分析模型; BOX条纹组件针对单栅完全耗尽型绝缘体上硅MOSFET建模。借助UFDG中实现的新模型,基于过程/物理的DG MOSFET通用通用紧凑模型UFDG / Spice3,我们可以看到,条纹电容严重影响了纳米DG CMOS速度,以及如何通过最佳重叠来减轻这种影响。在寄生电容和S / D电阻之间产生了很好的权衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号