首页> 外文期刊>IEEE Transactions on Electron Devices >Optimum pMOS-to-nMOS Width Ratio for Efficient Subthreshold CMOS Circuits
【24h】

Optimum pMOS-to-nMOS Width Ratio for Efficient Subthreshold CMOS Circuits

机译:高效亚阈值CMOS电路的最佳pMOS与nMOS宽度比

获取原文
获取原文并翻译 | 示例

摘要

The subthreshold region of operation in digital CMOS circuits provides a suitable low-power solution for many applications that need tremendously low-energy operation. However, this advantage comes at the cost of speed, so enhancing the speed of subthreshold circuits can expand their application spectrum. This paper presents the optimum pMOS-to-nMOS width ratio that leads to the maximum frequency of operation in the subthreshold region with no extra energy cost. The optimum pMOS-to-nMOS width ratio is obtained and compared through three approaches: 1) finding the maximum current-over-capacitance ratio of a biased transistor; 2) deriving an analytical expression by minimizing the delay of an inverter; and 3) simulating different CMOS logic gates in the subthreshold region. Simulation results illustrate that in the subthreshold region, the frequency attains its maximum at the optimum pMOS-to-nMOS width ratio independent of the supply voltage. Using this optimum value in designing a carry-look-ahead adder improves the propagation delay, energy consumption, and energy-delay product by up to 33%, 36%, and 57%, receptively, compared with when the conventional pMOS-to-nMOS width ratio (in the superthreshold region) is used. We verified our analytical model by performing circuit simulations in four CMOS technologies (TSMC 180 nm, IBM 130 nm, TSMC 90 nm, and ST 65 nm).
机译:数字CMOS电路中的亚阈值工作区域为许多需要极低功耗工作的应用提供了合适的低功耗解决方案。但是,这种优势是以速度为代价的,因此提高亚阈值电路的速度可以扩展其应用范围。本文提出了最佳的pMOS与nMOS宽度之比,该亚宽比可导致亚阈值区域内的最大工作频率,而无额外的能源成本。获得最佳的pMOS与nMOS宽度比,并通过三种方法进行比较:1)找到偏置晶体管的最大电流过电容比; 2)通过最小化逆变器的延迟来导出解析表达式; 3)模拟亚阈值区域中的不同CMOS逻辑门。仿真结果表明,在亚阈值区域中,频率在与电源电压无关的最佳pMOS与nMOS宽度比处达到最大值。与传统的pMOS-to-MOS相比,在设计超前进位加法器时使用这一最佳值可以使传播延迟,能量消耗和能量延迟乘积最多提高33%,36%和57%。使用nMOS宽度比(在超阈值区域中)。我们通过在四种CMOS技术(TSMC 180 nm,IBM 130 nm,TSMC 90 nm和ST 65 nm)中进行电路仿真来验证我们的分析模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号