首页> 外文期刊>Electron Devices, IEEE Transactions on >Gate Engineering to Improve Effective Resistance of 28-nm High- Metal Gate CMOS Devices
【24h】

Gate Engineering to Improve Effective Resistance of 28-nm High- Metal Gate CMOS Devices

机译:栅极工程技术可提高28nm高金属栅极CMOS器件的有效电阻

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we report the development of a high-/metal gate stacking process to reduce the effective gate resistance, and circuit level validation results in 28-nm gate first integrated high-/metal gate CMOS devices. To achieve this, millisecond annealing was adopted and the silicon (Si) gate and TiN gate electrode thicknesses were controlled. The recrystallized poly-Si gate by millisecond annealing improved the performance of the ring oscillator (RO) by 15% and the minimum operating voltage () of the high-frequency test pattern (HFTP) by 34 mV. The poly-Si gate improved the uniformity of the boron concentration and suppressed localized low doping area at the bottom of the gate. When the Si gate thickness was reduced by 10 Å with respect to the reference (POR) value, the performance of the RO improved by 5% and of HFTP improved by 20 mV due to the shorter boron diffusion distance. A 10- Å thicker TiN gate electrode improved of HFTP by 30 mV, since the thicker TiN reduced the TiN/Si gate interface resistance.
机译:在本文中,我们报告了高/金属栅极堆叠工艺的发展,以降低有效栅极电阻,并且在28nm栅极优先集成的高/金属栅极CMOS器件中进行了电路级验证。为此,采用了毫秒级退火,并控制了硅(Si)栅和TiN栅电极的厚度。通过毫秒级退火的重结晶多晶硅栅极,环形振荡器(RO)的性能提高了15%,高频测试图案(HFTP)的最小工作电压()则提高了34 mV。多晶硅栅极改善了硼浓度的均匀性,并抑制了栅极底部的局部低掺杂区。当Si栅极厚度相对于参考(POR)值减小10Å时,由于硼扩散距离更短,RO的性能提高了5%,HFTP的性能提高了20 mV。 TiN栅电极厚度增加10Å时,HFTP的性能提高了30 mV,因为TiN厚度减小了TiN / Si栅界面的电阻。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号