首页> 外文期刊>IEEE Transactions on Electron Devices >Hot-Carrier-Induced Degradation and Optimization for 700-V High-Voltage Lateral DMOS by the AC Stress
【24h】

Hot-Carrier-Induced Degradation and Optimization for 700-V High-Voltage Lateral DMOS by the AC Stress

机译:通过AC应力对700V高压横向DMO的热载体引起的降解和优化

获取原文
获取原文并翻译 | 示例

摘要

Because of the extremely narrow dc thermal safe operating area for 700-V high-voltage lateral double-diffused MOS (LDMOS) transistor, the gate duty-cycle-accelerated ac stress was adopted to investigate its hot-carrier-induced degradations. It is found that there are different degradation mechanisms with different amplitudes of ac gate stress, including the maximum operating gate voltage (V-gmax) stress and the maximum substrate current (I-submax) stress. For the V-gmax condition, the ON-resistance (R-ON) decreases first and increases finally, which is attributed to two competitive degradation mechanisms. One is the hot holes injection at the bird's beak during the gate pulse edges, and the other one is the hot electrons injection nearby the drain during the high state level of gate pulse. However, for the I-submax stress, the dramatical injection of hot electrons nearby the source-metal edge during the high state level of gate pulse is always the main degradation mechanism, resulting in a monotonous increase of R-ON. Moreover, the threshold voltage (V-th) degradations could be neglected due to the intact channel region under the V-gmax and I-submax conditions. In this way, the I-submax condition is regarded as the worst stress, and an improved device with a linear-doped buried-p-well (BP) structure beneath the P-body has been proposed to restrain the degradation under the worst stress condition.
机译:由于700V高压横向双扩散MOS(LDMOS)晶体管极其窄的直流热安全操作区域,采用浇口迁移循环加速的AC应力来研究其热载体诱导的降解。发现存在不同的劣化机制,具有不同的交流栅极应力幅度,包括最大操作栅极电压(V-Gmax)应力和最大基板电流(I-Cimax)应力。对于V-Gmax条件,导通电阻(R-on)首先降低并最终增加,这归因于两个竞争性退化机制。一个是在栅极脉冲边缘期间在鸟喙处注射的热孔,另一个是在栅极脉冲的高状态水平期间漏极的热电子注入。然而,对于I-CAPLAX应力,在栅极脉冲高状态水平期间源 - 金属边缘附近的热电子的显着注入始终是主劣化机制,导致R-ON的单调增加。此外,由于V-Gmax和I-Capsax条件下的完整通道区域,阈值电压(第V-Th)降解可能忽略。以这种方式,I-Cumpax条件被认为是最糟糕的应力,并且已经提出了一种具有线性掺杂掩埋-P阱(BP)结构的改进装置,以限制最坏的应力下的降解状况。

著录项

  • 来源
    《IEEE Transactions on Electron Devices》 |2020年第3期|1090-1097|共8页
  • 作者单位

    Southeast Univ Sch Elect Sci & Engn Natl ASIC Syst Engn Res Ctr Nanjing 210096 Peoples R China;

    Southeast Univ Sch Elect Sci & Engn Natl ASIC Syst Engn Res Ctr Nanjing 210096 Peoples R China;

    Southeast Univ Sch Elect Sci & Engn Natl ASIC Syst Engn Res Ctr Nanjing 210096 Peoples R China;

    Southeast Univ Sch Elect Sci & Engn Natl ASIC Syst Engn Res Ctr Nanjing 210096 Peoples R China;

    Southeast Univ Sch Elect Sci & Engn Natl ASIC Syst Engn Res Ctr Nanjing 210096 Peoples R China;

    Southeast Univ Sch Elect Sci & Engn Natl ASIC Syst Engn Res Ctr Nanjing 210096 Peoples R China;

    Southeast Univ Sch Elect Sci & Engn Natl ASIC Syst Engn Res Ctr Nanjing 210096 Peoples R China;

    CSMC Technol Corp Wuxi 214000 Jiangsu Peoples R China;

    CSMC Technol Corp Wuxi 214000 Jiangsu Peoples R China;

    CSMC Technol Corp Wuxi 214000 Jiangsu Peoples R China;

    CSMC Technol Corp Wuxi 214000 Jiangsu Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    700 V; AC; hot-carrier degradation; lateral double-diffused MOS (LDMOS); optimization;

    机译:700 V;AC;热载体降解;横向双漫射MOS(LDMOS);优化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号