首页> 外文期刊>IEEE Electron Device Letters >Capacitive Neural Network Using Charge-Stored Memory Cells for Pattern Recognition Applications
【24h】

Capacitive Neural Network Using Charge-Stored Memory Cells for Pattern Recognition Applications

机译:电容性神经网络使用电荷存储的存储器单元进行图案识别应用

获取原文
获取原文并翻译 | 示例

摘要

We report on capacitive neural network using charge-stored memory cells. Threshold voltage ( ${V}_{ext {th}}$ )-adjusted memory cells are used as capacitors with different capacitances in the synapse array. The capacitor array detects output voltage difference induced by capacitive coupling from input voltages when outputting the data of weighted memory cells in a read operation. Thus, power consumption is significantly improved. To verify the validity of the capacitor synapse array, MNIST simulations are performed. Though misclassification rate is slowly saturated compared to that of the linear synapse because of the non-linear weights, blow 1 % difference in misclassification rate is successfully obtained.
机译:我们使用电荷存储的存储器单元报告电容神经网络。阈值电压($ {v} _ { text {th {th}} $) - 调整存储器单元用作突触阵列中具有不同电容的电容器。电容器阵列在读取操作中输出加权存储器单元的数据时,通过电容耦合来检测通过电容耦合引起的输出电压差。因此,功耗得到了显着改善。为了验证电容突触阵列的有效性,执行Mnist模拟。与非线性重量相比,虽然错误分类率与线性突触相比缓慢饱和,但成功获得了错误分类率的吹1%差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号