机译:RTN对基于RRAM的突触神经网络模式识别精度的影响
Department of Electronics and Electrical Engineering, Liverpool John Moores University, Liverpool, U.K.;
Department of Electronics and Electrical Engineering, Liverpool John Moores University, Liverpool, U.K.;
Department of Electronics and Electrical Engineering, Liverpool John Moores University, Liverpool, U.K.;
Department of Electronics and Electrical Engineering, Liverpool John Moores University, Liverpool, U.K.;
Department of Electronics and Electrical Engineering, Liverpool John Moores University, Liverpool, U.K.;
Department of Electronics and Electrical Engineering, Liverpool John Moores University, Liverpool, U.K.;
Memory Design Department, imec, Leuven, Belgium;
Memory Design Department, imec, Leuven, Belgium;
Memory Design Department, imec, Leuven, Belgium;
Resistance; Pattern recognition; Switches; Synapses; Neural networks; Training; Neurons;
机译:突触设备变化对硬件神经网络中模式识别精度的影响
机译:基于视觉机制和监督突触学习的尖峰神经网络的模式识别
机译:使用混合突触和互补培训的神经网络优异的模式识别准确性
机译:RTN对基于RRAM的神经网络的影响
机译:使用粒子群优化对训练前的人工神经网络实现一致的近似最佳模式识别精度。
机译:突触设备变化对硬件神经网络中模式识别精度的影响
机译:RTN对基于RRAM的突触神经网络模式识别准确性的影响
机译:应用神经网络识别激光散射图案中机加工陶瓷表面下缺陷