首页> 外文期刊>Electron Device Letters, IEEE >Impact of RTN on Pattern Recognition Accuracy of RRAM-Based Synaptic Neural Network
【24h】

Impact of RTN on Pattern Recognition Accuracy of RRAM-Based Synaptic Neural Network

机译:RTN对基于RRAM的突触神经网络模式识别精度的影响

获取原文
获取原文并翻译 | 示例

摘要

Resistive switching memory devices can be categorized into either filamentary or non-filamentary ones depending on the switching mechanisms. Both types have been investigated as novel synaptic devices in hardware neural networks, but there is a lack of comparative study between them, especially in random telegraph noise (RTN) which could induce large resistance fluctuations. In this letter, we analyze the amplitude and occurrence rate of RTN in both Ta2O5filamentary and TiO2/a-Si (a-VMCO) non-filamentary resistive switching memory (RRAM) devices and evaluate its impact on the pattern recognition accuracy of neural networks. It is revealed that the non-filamentary RRAM has a tighter RTN amplitude distribution and much lower RTN occurrence rate than its filamentary counterpart, which leads to negligible RTN impact on recognition accuracy, making it a promising candidate in synaptic application.
机译:电阻切换存储器件可以根据切换机制分为丝状或非丝状。两种类型都已作为硬件神经网络中的新型突触设备进行了研究,但它们之间缺乏比较研究,尤其是在可能引起较大电阻波动的随机电报噪声(RTN)中。在这封信中,我们分析了Ta n 2 nO n 5 nfilamentary and TiO n 2 n / a-Si(a-VMCO)非丝状电阻切换存储(RRAM)设备,并评估其对神经网络模式识别准确性的影响。结果表明,非丝状RRAM比丝状RRAM具有更紧密的RTN振幅分布和更低的RTN发生率,这导致RTN对识别精度的影响可忽略不计,使其成为在突触应用中有希望的候选者。

著录项

  • 来源
    《Electron Device Letters, IEEE》 |2018年第11期|1652-1655|共4页
  • 作者单位

    Department of Electronics and Electrical Engineering, Liverpool John Moores University, Liverpool, U.K.;

    Department of Electronics and Electrical Engineering, Liverpool John Moores University, Liverpool, U.K.;

    Department of Electronics and Electrical Engineering, Liverpool John Moores University, Liverpool, U.K.;

    Department of Electronics and Electrical Engineering, Liverpool John Moores University, Liverpool, U.K.;

    Department of Electronics and Electrical Engineering, Liverpool John Moores University, Liverpool, U.K.;

    Department of Electronics and Electrical Engineering, Liverpool John Moores University, Liverpool, U.K.;

    Memory Design Department, imec, Leuven, Belgium;

    Memory Design Department, imec, Leuven, Belgium;

    Memory Design Department, imec, Leuven, Belgium;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Resistance; Pattern recognition; Switches; Synapses; Neural networks; Training; Neurons;

    机译:阻力;模式识别;开关;突触;神经网络;训练;神经元;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号