首页> 外文期刊>IEEE Transactions on Education >Integrating Model-Based Approaches Into a Neuroscience Curriculum—An Interdisciplinary Neuroscience Course in Engineering
【24h】

Integrating Model-Based Approaches Into a Neuroscience Curriculum—An Interdisciplinary Neuroscience Course in Engineering

机译:将基于模型的方法整合到神经科学课程中—工程学中的跨学科神经科学课程

获取原文
获取原文并翻译 | 示例
       

摘要

Contribution: This paper demonstrates curricular modules that incorporate engineering model-based approaches, including concepts related to circuits, systems, modeling, electrophysiology, programming, and software tutorials that enhance learning in undergraduate neuroscience courses. These modules can also be integrated into other neuroscience courses.Background: Educators in biological and physical sciences urge incorporation of computation and engineering approaches into biology. Model-based approaches can provide insights into neural function; prior studies show these are increasingly being used in research in biology. Reports about their integration in undergraduate neuroscience curricula, however, are scarce. There is also a lack of suitable courses to satisfy engineering students' interest in the challenges in the growing area of neural sciences.Intended Outcomes: (1) Improved student learning in interdisciplinary neuroscience; (2) enhanced teaching by neuroscience faculty; (3) research preparation of undergraduates; and 4) increased interdisciplinary interactions.Application Design: An interdisciplinary undergraduate neuroscience course that incorporates computation and model-based approaches and has both software-and wet-lab components, was designed and co-taught by colleges of engineering and arts and science.Findings: Model-based content improved learning in neuroscience for three distinct groups: 1) undergraduates; 2) Ph. D. students; and 3) post-doctoral researchers and faculty. Moreover, the importance of the content and the utility of the software in enhancing student learning was rated highly by all these groups, suggesting a critical role for engineering in shaping the neuroscience curriculum. The model for cross-training also helped facilitate interdisciplinary research collaborations.
机译:贡献:本文演示了课程模块,这些模块结合了基于工程模型的方法,包括与电路,系统,建模,电生理学,编程和软件教程相关的概念,这些概念可增强本科神经科学课程的学习。这些模块也可以集成到其他神经科学课程中。背景:生物和物理科学领域的教育者要求将计算和工程方法纳入生物学。基于模型的方法可以提供对神经功能的见解;先前的研究表明,这些已越来越多地用于生物学研究中。但是,关于将它们整合到大学神经科学课程中的报道很少。还缺少合适的课程来满足工程专业学生对神​​经科学不断发展的挑战的兴趣。预期结果:(1)改进学生对跨学科神经科学的学习; (2)加强神经科学学院的教学; (3)本科生的研究准备;和4)跨学科的互动增加。应用设计:跨学科的本科神经科学课程由工程,艺术和自然科学学院设计并共同教授,该课程融合了基于计算和基于模型的方法,同时包含软件和湿实验室组件。 :基于模型的内容可改善三个不同类别的神经科学学习:1)大学生; 2)博士生; 3)博士后研究人员和教师。此外,所有这些团体都高度评价了软件的内容和实用性在增强学生学习能力方面的重要性,这表明工程学在塑造神经科学课程中起着至关重要的作用。交叉培训模型还有助于促进跨学科的研究合作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号