首页> 外文期刊>Discrete and Computational Geometry >Recurrence Relationships for the Mean Number of Faces and Vertices for Random Convex Hulls
【24h】

Recurrence Relationships for the Mean Number of Faces and Vertices for Random Convex Hulls

机译:随机凸包的平均面数和顶点数的递归关系

获取原文
获取原文并翻译 | 示例

摘要

This paper studies the convex hull of n random points in . A recently proved topological identity of the author is used in combination with identities of Efron and Buchta to find the expected number of vertices of the convex hull—yielding a new recurrence formula for all dimensions d. A recurrence for the expected number of facets and (d−2)-faces is also found, this analysis building on a technique of Rényi and Sulanke. Other relationships for the expected count of i-faces (1≤i
机译:本文研究了n个随机点的凸包。作者的最新证明的拓扑身份与Efron和Buchta的身份结合使用,以查找凸包的预期顶点数-为所有维d提供新的递归公式。还发现了预期面数和(d-2)面的重复现象,该分析基于Rényi和Sulanke的技术。通过应用Dehn-Sommerville恒等式,当d≤5时,可以找到i面的预期数量的其他关系(1≤i

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号