首页> 外文期刊>Discrete and continuous dynamical systems >REPEATED GAMES FOR NON-LINEAR PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS AND INTEGRAL CURVATURE FLOWS
【24h】

REPEATED GAMES FOR NON-LINEAR PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS AND INTEGRAL CURVATURE FLOWS

机译:非线性抛物线积分微分方程和积分曲率流的重复游戏

获取原文
获取原文并翻译 | 示例

摘要

The main purpose of this paper is to approximate several non-local evolution equations by zero-sum repeated games in the spirit of the previous works of Kohn and the second author (2006 and 2009): general fully nonlinear parabolic integro-differential equations on the one hand, and the integral curvature flow of an on the other hand. In order to do so, we start by constructing such a game for eikonal equations whose speed has a non-constant sign. This provides a (discrete) deterministic control interpretation of these evolution equations. In all our games, two players choose positions successively, and their final payoff is determined by their positions and additional parameters of choice. Because of the non-locality of the problems approximated, by contrast with local problems, their choices have to "collect" information far from their current position. For parabolic integro-differential equations, players choose smooth functions on the whole space. For integral curvature flows, players choose hypersurfaces in the whole space and positions on these hypersurfaces.
机译:本文的主要目的是根据Kohn和第二作者(2006年和2009年)的先前著作的精神,通过零和重复博弈来逼近几个非局部演化方程:上的一般完全非线性抛物积分微分方程。一方面,而另一方则是整体曲率流。为了做到这一点,我们首先为速度为非常数的电子方程式构造这样的博弈。这为这些演化方程式提供了(离散的)确定性控制解释。在我们所有的游戏中,有两个玩家连续选择位置,而他们的最终收益取决于他们的位置和其他选择参数。由于与局部问题相比,近似问题的非局部性,他们的选择必须“远离”当前位置来“收集”信息。对于抛物线积分微分方程,游戏者选择整个空间的平滑函数。对于积分曲率流,玩家选择整个空间中的超曲面,并选择这些超曲面上的位置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号