首页> 外文会议>International Conference on Numerical Analysis and Applied Mathematics >Boundary Integral Equation Approach for Stokes Flow with Non-Linear Slip Boundary Condition
【24h】

Boundary Integral Equation Approach for Stokes Flow with Non-Linear Slip Boundary Condition

机译:非线性滑动边界条件的斯托克斯流量边界积分方程方法

获取原文

摘要

The numerical simulation of microfluid flow through the solution of governing equations based on continuum models has to be done under the consideration of appropriate slip boundary conditions to account for the velocity jump at the solid-fluid interface. The linear model proposed by Navier states a relation between the tangential shear rate and the fluid-wall velocity differences and has been successfully used in reproducing the characteristics of many types of flows (e.g. slit flows, rotating curved mixers, microbearings, among others), where the shear rate at solid-fluid interfaces remains linear because of the geometry smoothness. Despite this, there are some situations for which this linear dependency fails leading to unrealistic behaviour and an expression for the slip condition at a solid-liquid interface establishing the variation in the slip length in terms of the square root of the tangential shear rate needs to be used. This work employs a boundary integral equation formulation for Stokes slip flow based on the normal and tangential projection of the Green's integral representational formulae for the Stokes velocity field, which directly incorporates into the integral equations the local tangential shear rate at the wall surfaces. The universal slip flow boundary condition is presented in terms of the tangential surface traction allowing its inclusion into the normal and tangential projections of boundary integral equation formulation for Stokes flow. The Boundary Element Method (BEM) is employed to solve the resulting projections of the integral equations and the equation system is evaluated iteratively turning the non-linear term into a non-homogeneous constant vector by using results from previous iteration. This formulation is used to simulate flow between parallel plates and concentric rotating mixer. The numerical results obtained for both problems are validated with the corresponding analytical solutions with non-linear boundary condition, showing excellent agreements. Results obtained in this work extend the use of BEM for the study of microfluid flow, allowing the developed of more geometrical complex microfluidic applications.
机译:通过基于连续模型的基于连续式模型的控制方程溶液的数值模拟必须在考虑适当的滑动边界条件下进行,以解释固体流体接口处的速度跳跃。 Navier提出的线性模型状态指出了切向剪切速率与流体壁速度差之间的关系,并且已成功地用于再现多种类型的流量(例如狭缝流动,旋转弯曲混合器,微生物,等等),在固体流体接口处的剪切速率由于几何平滑度而保持线性。尽管如此,在某些情况下,这种线性依赖性失败导致不切实际的行为以及在实体界面处的防滑条件的表达式在切向剪切速率的平方根方面建立滑动长度的变化使用。该工作采用基于斯托克斯速度场的绿色积分代表公式的正常和切向投影的斯托克斯滑动流的边界整体方程配方,这直接包含在壁表面上的局部切向剪切速率的整体方程中。通过切向表面牵引呈现通用滑动流边界条件,允许其包含进入斯托克斯流的边界整体式制剂的正常和切向投影。边界元方法(BEM)用于解决积分方程的所得到的突起,并且通过使用先前迭代的结果迭代地将非线性术语转换为非均匀常数矢量的等式系统。该配方用于模拟平行板和同心旋转混合器之间的流动。对于两个问题获得的数值结果与具有非线性边界条件的相应分析解验证,显示出很好的协议。在该工作中获得的结果延长了BEM用于研究微流体流动的研究,允许开发更多的几何复杂的微流体应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号