首页> 外文期刊>Discrete and continuous dynamical systems >ERROR ESTIMATES FOR SECOND ORDER HAMILTON-JACOBI-BELLMAN EQUATIONS. APPROXIMATION OF PROBABILISTIC REACHABLE SETS
【24h】

ERROR ESTIMATES FOR SECOND ORDER HAMILTON-JACOBI-BELLMAN EQUATIONS. APPROXIMATION OF PROBABILISTIC REACHABLE SETS

机译:二阶Hamilton-Jacobi-Bellman方程的误差估计。概率可达集的逼近

获取原文
获取原文并翻译 | 示例

摘要

This work deals with numerical approximations of unbounded and discontinuous value functions associated to some stochastic control problems. We derive error estimates for monotone schemes based on a Semi-Lagrangian method (or more generally in the form of a Markov chain approximation). A motivation of this study consists in approximating chance-constrained reachability sets. The latters will be characterized as level sets of a discontinuous value function associated to an adequate stochastic control problem. A precise analysis of the level-set approach is carried out and some numerical simulations are given to illustrate the approach.
机译:这项工作处理与一些随机控制问题相关的无界和不连续值函数的数值近似。我们基于Semi-Lagrangian方法(或更一般而言,以Markov链近似的形式)得出单调方案的误差估计。这项研究的动机在于近似受机会约束的可达性集。后者将被表征为与适当的随机控制问题相关的不连续值函数的水平集。对水平集方法进行了精确分析,并给出了一些数值模拟来说明该方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号