首页> 外文期刊>Mathematical Theory and Modeling >Non-Bayes, Bayes and Empirical Bayes Estimators for the Shape Parameter of Lomax Distribution
【24h】

Non-Bayes, Bayes and Empirical Bayes Estimators for the Shape Parameter of Lomax Distribution

机译:Lomax分布形状参数的非贝叶斯,贝叶斯和经验贝叶斯估计

获取原文

摘要

Point estimation is one of the core topics in mathematical statistics. In this paper we consider the most common methods of point estimation: non-Bayes, Bayes and empirical Bayes methods to estimate the shape parameter of Lomax distribution based on complete data. The maximum likelihood, moment and uniformly minimum variance unbiased estimators are obtained as non-Bayes estimators. Bayes and empirical Bayes estimators are obtained corresponding to three informative priors "gamma, chi-square and inverted Levy" based on symmetric "squared error" and asymmetric "LINEX and general entropy" loss functions. The estimates of the shape parameter were compared empirically via Monte Carlo simulation study based upon the mean squared error. Among the set of conclusions that have been reached, it is observed that, for all sample sizes and different cases, the performance of uniformly minimum variance unbiased estimator is better than other non-Bayes estimators. Further that, Monte Carlo simulation results indicate that the performance of Bayes and empirical Bayes estimator in some cases are better than non-Bayes for some appropriate of prior distribution, loss function, values of parameters and sample size.
机译:点估计是数学统计的核心主题之一。在本文中,我们考虑了最常用的点估计方法:非贝叶斯,贝叶斯和经验贝叶斯方法,基于完整数据来估计Lomax分布的形状参数。获得最大似然,矩和一致最小方差的无偏估计量,作为非贝叶斯估计量。根据对称的“平方误差”和非对称的“ LINEX和一般熵”损失函数,分别对应三个信息先验“伽马,卡方和倒征”获得贝叶斯和经验贝叶斯估计量。根据均方误差,通过蒙特卡洛模拟研究对形状参数的估计值进行了经验比较。在已经得出的一系列结论中,可以观察到,对于所有样本量和不同情况,统一最小方差无偏估计器的性能要优于其他非贝叶斯估计器。此外,蒙特卡洛模拟结果表明,在某些情况下,对于先验分布,损失函数,参数值和样本大小,贝叶斯和经验贝叶斯估计器的性能要优于非贝叶斯。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号