首页> 外文期刊>Journal of statistical computation and simulation >The empirical Bayes estimators of the parameter of the Poisson distribution with a conjugate gamma prior under Stein's loss function
【24h】

The empirical Bayes estimators of the parameter of the Poisson distribution with a conjugate gamma prior under Stein's loss function

机译:泊松分布参数的经验贝叶斯估计与斯坦因损失函数的共轭γ分布

获取原文
获取原文并翻译 | 示例

摘要

For the hierarchical Poisson and gamma model, we calculate the Bayes posterior estimator of the parameter of the Poisson distribution under Stein's loss function which penalizes gross overestimation and gross underestimation equally and the corresponding Posterior Expected Stein's Loss (PESL). We also obtain the Bayes posterior estimator of the parameter under the squared error loss and the corresponding PESL. Moreover, we obtain the empirical Bayes estimators of the parameter of the Poisson distribution with a conjugate gamma prior by two methods. In numerical simulations, we have illustrated: The two inequalities of the Bayes posterior estimators and the PESLs; the moment estimators and the Maximum Likelihood Estimators (MLEs) are consistent estimators of the hyperparameters; the goodness-of-fit of the model to the simulated data. The numerical results indicate that the MLEs are better than the moment estimators when estimating the hyperparameters. Finally, we exploit the attendance data on 314 high school juniors from two urban high schools to illustrate our theoretical studies.
机译:对于分层泊松和伽玛模型,我们计算斯坦因损失函数下泊松分布参数的贝叶斯后估计,惩罚总估计和低估的平等和相应的后期毒剂的损失(PESL)。我们还在平方误差损失和相应的PESL下获得参数的贝叶斯后估计器。此外,我们通过两种方法获得了用缀合物γ的泊松分布参数的经验贝叶斯估计。在数值模拟中,我们已经说明:贝叶斯后估计和PESL的两种不等式;片刻估算器和最大似然估计(MLES)是高参数的一致估算值;模型对模拟数据的拟合拟合。数值结果表明,在估计超参数时,MLES比力矩估计更好。最后,我们从两个城市高中利用314名高中小学的出勤数据来说明我们的理论研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号