首页> 外文期刊>Journal of statistical computation and simulation >The empirical Bayes estimators of the rate parameter of the inverse gamma distribution with a conjugate inverse gamma prior under Stein's loss function
【24h】

The empirical Bayes estimators of the rate parameter of the inverse gamma distribution with a conjugate inverse gamma prior under Stein's loss function

机译:在Stein损失函数之前用缀合物逆γ的逆伽马分布率参数的经验贝叶斯估算

获取原文
获取原文并翻译 | 示例

摘要

For the hierarchical inverse gamma and inverse gamma model, we calculate the Bayes posterior estimator of the rate parameter of the inverse gamma distribution under Stein's loss function which penalizes gross overestimation and gross underestimation equally and the corresponding Posterior Expected Stein's Loss (PESL). We also obtain the Bayes posterior estimator of the rate parameter under the squared error loss and the corresponding PESL. Moreover, we obtain the empirical Bayes estimators of the rate parameter of the inverse gamma distribution with a conjugate inverse gamma prior by the moment and MLE methods. In numerical simulations, we have illustrated four aspects: Consistency, goodness-of-fit, comparison, and marginal densities. The numerical results indicate that the MLEs are better than the moment estimators when estimating the hyperparameters. Finally, the model could potentially be used to fit right skewed data, not left-skewed data.
机译:对于分层逆伽马和逆伽马模型,我们计算Stein损失函数下逆伽马分布的速率参数的贝叶斯后估计,这惩罚了总估计和粗糙的低估以及相应的后预期毒剂的损失(PESL)。 我们还在平方误差损耗和相应的PESL下获得速率参数的贝叶斯后估计。 此外,我们在当前和MLE方法之前获得了缀合物逆γ的逆伽马分布的速率参数的经验贝叶斯估计。 在数值模拟中,我们已经说明了四个方面:一致性,健康,比较和边际密度。 数值结果表明,在估计超参数时,MLES优于矩估计。 最后,该模型可能用于适合右偏斜数据,而不是左偏移数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号