首页> 外文期刊>International Journal of Advanced Robotic Systems >Novel Adaptive Forward Neural MIMO NARX Model for the Identification of Industrial 3-DOF Robot Arm Kinematics
【24h】

Novel Adaptive Forward Neural MIMO NARX Model for the Identification of Industrial 3-DOF Robot Arm Kinematics

机译:新型自适应前向神经MIMO NARX模型用于工业3自由度机器人手臂运动学识别

获取原文

摘要

In this paper, a novel forward adaptive neural MIMO NARX model is used for modelling and identifying the forward kinematics of an industrial 3-DOF robot arm system. The nonlinear features of the forward kinematics of the industrial robot arm drive are thoroughly modelled based on the forward adaptive neural NARX model-based identification process using experimental input-output training data. This paper proposes a novel use of a back propagation (BP) algorithm to generate the forward neural MIMO NARX (FNMN) model for the forward kinematics of the industrial 3-DOF robot arm. The results show that the proposed adaptive neural NARX model trained by a Back Propagation learning algorithm yields outstanding performance and perfect accuracy.
机译:在本文中,一种新颖的前向自适应神经MIMO NARX模型用于建模和识别工业3-DOF机器人手臂系统的前向运动学。基于前向自适应神经NARX模型的识别过程,使用实验输入输出训练数据,对工业机器人手臂驱动的正向运动学的非线性特征进行了彻底建模。本文提出了一种新颖的反向传播(BP)算法,用于为工业3-DOF机器人手臂的正向运动生成正向神经MIMO NARX(FNMN)模型。结果表明,所提出的由反向传播学习算法训练的自适应神经NARX模型具有出色的性能和完美的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号