首页> 外文期刊>Decision support systems >The added value of auxiliary data in sentiment analysis of Facebook posts
【24h】

The added value of auxiliary data in sentiment analysis of Facebook posts

机译:辅助数据在Facebook帖子情绪分析中的附加值

获取原文
获取原文并翻译 | 示例

摘要

The purpose of this study is to (1) assess the added value of information available before (i.e., leading) and after (i.e., lagging) the focal post's creation time in sentiment analysis of Facebook posts, (2) determine which predictors are most important, and (3) investigate the relationship between top predictors and sentiment. We build a sentiment prediction model, including leading information, lagging information, and traditional post variables. We benchmark Random Forest and Support Vector Machines using five times twofold cross validation. The results indicate that both leading and lagging information increase the model's predictive performance. The most important predictors include the number of uppercase letters, the number of likes and the number of negative comments. A higher number of uppercase letters and likes increases the likelihood of a positive post, while a higher number of comments increases the likelihood of a negative post. The main contribution of this study is that it is the first to assess the added value of leading and lagging information in the context of sentiment analysis. (C) 2016 Elsevier B.V. All rights reserved.
机译:这项研究的目的是(1)在Facebook帖子的情感分析中评估焦点职位创建时间之前(即领先)和之后(即滞后)可用信息的附加值,(2)确定哪些预测因素最有效重要;(3)研究最佳预测变量与情绪之间的关系。我们建立了情感预测模型,包括领先信息,落后信息和传统的职位变量。我们使用五次两次交叉验证对随机森林和支持向量机进行基准测试。结果表明,前导信息和滞后信息都可以提高模型的预测性能。最重要的预测变量包括大写字母的数量,喜欢的数量和否定评论的数量。数量更多的大写字母和喜欢增加了发表正面文章的可能性,而数量更多的评论增加了发表负面文章的可能性。这项研究的主要贡献在于,它是第一个在情感分析的背景下评估领先和落后信息的附加值的方法。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号