首页> 外文期刊>Cybernetics, IEEE Transactions on >Optimal Output Regulation of Linear Discrete-Time Systems With Unknown Dynamics Using Reinforcement Learning
【24h】

Optimal Output Regulation of Linear Discrete-Time Systems With Unknown Dynamics Using Reinforcement Learning

机译:利用增强学习,具有未知动力学线性离散时间系统的最佳输出调节

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a model-free optimal approach based on reinforcement learning for solving the output regulation problem for discrete-time systems under disturbances. This problem is first broken down into two optimization problems: 1) a constrained static optimization problem is established to find the solution to the output regulator equations (i.e., the feedforward control input) and 2) a dynamic optimization problem is established to find the optimal feedback control input. Solving these optimization problems requires the knowledge of the system dynamics. To obviate this requirement, a model-free off-policy algorithm is presented to find the solution to the dynamic optimization problem using only measured data. Then, based on the solution to the dynamic optimization problem, a model-free approach is provided for the static optimization problem. It is shown that the proposed algorithm is insensitive to the probing noise added to the control input for satisfying the persistence of excitation condition. Simulation results are provided to verify the effectiveness of the proposed approach.
机译:本文提出了一种基于加强学习的无模型最佳方法,用于解决干扰下的离散时间系统的输出调节问题。这个问题首先分为两个优化问题:1)建立了一个约束的静态优化问题,以找到输出调节器方程(即,前馈控制输入)和2)建立动态优化问题以找到最佳状态反馈控制输入。解决这些优化问题需要了解系统动态。为了避免此要求,提出了一种无模型的脱核算法,以仅使用测量数据找到动态优化问题的解决方案。然后,基于对动态优化问题的解决方案,为静态优化问题提供了一种无模型方法。结果表明,该算法对添加到控制输入的探测噪声不敏感,以满足激发条件的持久性。提供了仿真结果以验证所提出的方法的有效性。

著录项

  • 来源
    《Cybernetics, IEEE Transactions on》 |2020年第7期|3147-3156|共10页
  • 作者单位

    Northeastern Univ State Key Lab Synthet Automat Proc Ind Shenyang 110819 Peoples R China|Northeastern Univ Int Joint Res Lab Integrated Automat Shenyang 110819 Peoples R China|Univ Alberta Dept Elect & Comp Engn Edmonton AB T6G 2V4 Canada;

    Michigan State Univ Dept Elect & Comp Engn E Lansing MI 48824 USA;

    Northeastern Univ State Key Lab Synthet Automat Proc Ind Shenyang 110819 Peoples R China|Northeastern Univ Int Joint Res Lab Integrated Automat Shenyang 110819 Peoples R China;

    Northeastern Univ State Key Lab Synthet Automat Proc Ind Shenyang 110819 Peoples R China|Northeastern Univ Int Joint Res Lab Integrated Automat Shenyang 110819 Peoples R China;

    Liaoning Shihua Univ Sch Informat & Control Engn Fushun 113001 Peoples R China;

    Northeastern Univ State Key Lab Synthet Automat Proc Ind Shenyang 110819 Peoples R China|Northeastern Univ Int Joint Res Lab Integrated Automat Shenyang 110819 Peoples R China|Univ Texas Arlington UTA Res Inst Arlington TX 76118 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Optimization; Heuristic algorithms; Mathematical model; System dynamics; Optimal control; Automation; Reinforcement learning; Discrete-time (DT) systems; model-free; optimal output regulation; reinforcement learning (RL);

    机译:优化;启发式算法;数学模型;系统动力学;最优控制;自动化;加固学习;离散时间(DT)系统;无模型;最优输出调节;加固学习(RL);

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号