首页> 外文期刊>Control Theory & Applications, IET >Field-programmable gate array-based intelligent dynamic sliding-mode control using recurrent wavelet neural network for linear ultrasonic motor
【24h】

Field-programmable gate array-based intelligent dynamic sliding-mode control using recurrent wavelet neural network for linear ultrasonic motor

机译:基于递归小波神经网络的线性超声电动机基于现场可编程门阵列的智能动态滑模控制

获取原文
获取原文并翻译 | 示例

摘要

A field-programmable gate array (FPGA)-based intelligent dynamic sliding-mode control (IDSMC) using recurrent wavelet neural network (RWNN) estimator is proposed to control the mover position of a linear ultrasonic motor (LUSM) in this study. First, the structure and operating principles of the LUSM are introduced briefly. Then, the dynamics of LUSM mechanism with the introduction of a lumped uncertainty, which include the friction force, is derived. Since the dynamic characteristics and motor parameters of the LUSM are nonlinear and time-varying, an IDSMC using RWNN estimator is designed to achieve robust control performance of the LUSM drive system. The RWNN estimator is employed to estimate the non-linear functions including the system parameters and external disturbance. Moreover, the adaptive learning algorithm trained the parameters of the RWNN online is derived using the Lyapunov stability theorem. Furthermore, an FPGA chip is adopted to implement the developed control and on-line learning algorithms for possible low-cost and high-performance industrial applications. The experimental results show that excellent positioning and tracking performance are achieved. In addition, the robustness to parameter variations and friction force can be obtained as well using the proposed control system.
机译:提出了一种基于现场可编程门阵列(FPGA)的智能动态滑模控制(IDSMC),它利用递归小波神经网络(RWNN)估计器来控制线性超声电机(LUSM)的动子位置。首先,简要介绍LUSM的结构和工作原理。然后,推导了LUSM机制的动力学,引入了包括摩擦力在内的总不确定性。由于LUSM的动态特性和电动机参数是非线性且随时间变化的,因此设计了使用RWNN估计器的IDSMC,以实现LUSM驱动系统的鲁棒控制性能。 RWNN估计器用于估计非线性函数,包括系统参数和外部干扰。此外,使用Lyapunov稳定性定理推导了在线训练RWNN参数的自适应学习算法。此外,采用FPGA芯片来实现针对可能的低成本和高性能工业应用而开发的控制和在线学习算法。实验结果表明,该算法具有良好的定位和跟踪性能。另外,使用所提出的控制系统也可以获得参数变化和摩擦力的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号