首页> 外文学位 >Intelligent closed-loop control using dynamic recurrent neural network and real-time adaptive critic.
【24h】

Intelligent closed-loop control using dynamic recurrent neural network and real-time adaptive critic.

机译:利用动态递归神经网络和实时自适应批评家的智能闭环控制。

获取原文
获取原文并翻译 | 示例

摘要

Researchers in the field of intelligent control are introducing new concepts and techniques for control. Given a control problem, researchers working in the field of intelligent control typically use an approach to control that is motivated by the forms of representation and decision-making in human/animal/biological systems, and often heuristically construct what turns out to be a nonlinear, perhaps adaptive controller. While simulations results are typically used to "verify" the approach and successful implementations have been achieved (e.g., via fuzzy, expert, and neural network control), it is often the case that no nonlinear stability analysis is performed to verify the behavior of the closed-loop system.; Neural network have been proven to be very efficient for the control of nonlinear dynamical systems. Neural networks make use of nonlinearity, learning ability, parallel processing ability, and function approximation for application to advanced adaptive control. Major neural network topics include supervised learning control, inverse control, neural adaptive control, back-propagation of utility, and adaptive critics. However, neuromorphic control is effective only for a specific task in a specific environment, since the neuromorphic controllers have no meta-knowledge or data base.; In recent years, fuzzy logic has emerged as an important tool to control a system whose model is not known or ill-defined. The fuzzy logic nonlinear universal function approximation property, shared with feedforward neural networks, is often utilized. Fuzzy logic is very powerful because the fuzzy inference engine can be derived from either numerical data or linguistic knowledge. However, most fuzzy logic controllers fail to provide rigorous stability analysis.; In this Ph.D. dissertation, a rigorous mathematical formulation is presented to guarantee system performance under approximation-based control. The control of systems with unknown dynamics is accomplished using neural networks and fuzzy logic systems. Novel on-line learning algorithms are developed based on Lyapunov theory, and tracking performance and robustness properties are rigorously proven with performance verified through numerical examples.
机译:智能控制领域的研究人员正在介绍控制的新概念和技术。给定控制问题,在智能控制领域工作的研究人员通常使用一种以人类/动物/生物系统中的表示形式和决策形式为动力的控制方法,并且经常试探性地构建出一种非线性的控制方法。 ,也许是自适应控制器。虽然仿真结果通常用于“验证”方法并已成功实现(例如,通过模糊,专家和神经网络控制),但通常情况下,没有执行非线性稳定性分析来验证模型的行为。闭环系统。神经网络已被证明对于非线性动力学系统的控制非常有效。神经网络利用非线性,学习能力,并行处理能力和函数逼近来将其应用于高级自适应控制。神经网络的主要主题包括监督学习控制,逆控制,神经自适应控制,效用的反向传播和自适应批判。但是,神经形态控制仅对特定环境中的特定任务有效,因为神经形态控制器没有元知识或数据库。近年来,模糊逻辑已成为控制模型未知或定义不明确的系统的重要工具。与前馈神经网络共享的模糊逻辑非线性通用函数逼近性质经常被利用。模糊逻辑非常强大,因为模糊推理引擎可以从数值数据或语言知识中得出。但是,大多数模糊逻辑控制器无法提供严格的稳定性分析。在这个博士学位论文提出了一种严格的数学公式来保证系统在近似控制下的性能。动力学未知的系统的控制是使用神经网络和模糊逻辑系统完成的。基于Lyapunov理论开发了新颖的在线学习算法,并通过数值示例验证了性能,严格证明了跟踪性能和鲁棒性。

著录项

  • 作者

    Kim, Young Ho.;

  • 作者单位

    The University of Texas at Arlington.;

  • 授予单位 The University of Texas at Arlington.;
  • 学科 Engineering Electronics and Electrical.; Engineering System Science.
  • 学位 Ph.D.
  • 年度 1997
  • 页码 223 p.
  • 总页数 223
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;系统科学;
  • 关键词

  • 入库时间 2022-08-17 11:48:58

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号