首页> 外文期刊>Control Theory & Applications, IET >Modelling and identification for non-uniformly periodically sampled-data systems
【24h】

Modelling and identification for non-uniformly periodically sampled-data systems

机译:非均匀周期性采样数据系统的建模和识别

获取原文
获取原文并翻译 | 示例

摘要

The authors state the non-uniformly periodically sampling pattern and derives the state-space models of non-uniformly sampled-data systems with coloured noises, and further obtains the corresponding transfer function models. Difficulties of identification are that there exist unknown inner variables and unmeasurable noise terms in the information vectors. By means of the auxiliary model method, an auxiliary model based multi-innovation generalised extended stochastic gradient (SG) algorithm is presented by expanding the scalar innovation to the innovation vector and introducing the innovation length. The proposed algorithm provides higher parameter estimation accuracy and faster convergence rate than the SG algorithmdue to repeatedly using the system innovation.
机译:作者陈述了非均匀周期性采样模式,并推导了带有色噪声的非均匀采样数据系统的状态空间模型,并进一步获得了相应的传递函数模型。识别的困难在于信息向量中存在未知的内部变量和不可测量的噪声项。借助于辅助模型方法,通过将标量创新扩展到创新向量并引入创新长度,提出了一种基于辅助模型的多创新广义扩展随机梯度算法。与SG算法相比,该算法具有较高的参数估计精度和更快的收敛速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号