首页> 外文期刊>Control Theory & Applications, IET >Robust-tracking control for robot manipulator with deadzone and friction using backstepping and RFNN controller
【24h】

Robust-tracking control for robot manipulator with deadzone and friction using backstepping and RFNN controller

机译:使用Backstepping和RFNN控制器的具有死区和摩擦力的机器人机械臂的鲁棒跟踪控制

获取原文
获取原文并翻译 | 示例

摘要

This study deals with a robust non-smooth non-linearity compensation scheme for the direct-drive robot manipulator with an asymmetric deadzone, dynamic friction in joints and between the environmental contact space and end-effector and uncertainty. A model-free recurrent fuzzy neural network (RFNN) control system to approximate the ideal backstepping control law is designed to replace the traditional model-based adaptive controller, which requires information on the robots dynamics in advance. The simple dead-zone estimator and friction compensator based on the elasto-plastic friction model are developed in order to estimate unknown dead-zone width and friction parameters. The Lyapunov stability analysis yields the adaptive laws of the RFNN controller as well as the estimators of a dead-zone width and an elasto-plastic friction parameter. The validity of the proposed control scheme is confirmed from simulated results for free and constrained direct-drive robots with a deadzone in joint actuator, dynamic friction in joints and contact surfaces of the end-effector and uncertainty.
机译:这项研究针对具有不对称死区,关节以及环境接触空间和末端执行器之间以及不确定性之间的动态摩擦的直驱机器人操纵器,提出了一种鲁棒的非光滑非线性补偿方案。设计一种无模型的递归模糊神经网络(RFNN)控制系统来逼近理想的反步控制律,以取代传统的基于模型的自适应控制器,后者需要事先提供有关机器人动力学的信息。为了估算未知的死区宽度和摩擦参数,开发了基于弹塑性摩擦模型的简单死区估计器和摩擦补偿器。 Lyapunov稳定性分析得出RFNN控制器的自适应定律,以及死区宽度和弹塑性摩擦参数的估计量。自由和受约束的直接驱动机器人在关节致动器中具有死区,关节和末端执行器的接触面之间的动态摩擦以及不确定性的仿真结果证实了所提出的控制方案的有效性。

著录项

  • 来源
    《Control Theory & Applications, IET》 |2011年第12期|p.1397-1417|共21页
  • 作者

    Park S.H.; Han S.I.;

  • 作者单位

    Department of Mechatronics Engineering, Dongseo University, Busan, Republic of Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号