首页> 外文期刊>Control Theory & Applications, IET >Data-driven optimal tracking control for a class of affine non-linear continuous-time systems with completely unknown dynamics
【24h】

Data-driven optimal tracking control for a class of affine non-linear continuous-time systems with completely unknown dynamics

机译:动力学完全未知的一类仿射非线性连续时间系统的数据驱动最优跟踪控制

获取原文
获取原文并翻译 | 示例

摘要

In this study, the optimal tracking control problem (OTCP) for affine non-linear continuous-time systems with completely unknown dynamics is addressed based on data by introducing the reinforcement learning (RL) technique. Unlike existing methods to the OTCP, the proposed data-driven policy iteration (PI) method does not need to have or identify any knowledge of the system dynamics, including both drift dynamics and input dynamics. To carry out the proposed method, the original OTCP is pre-processed to construct an augmented system composed of the error system dynamics and the desired trajectory dynamics. Then, based on the augmented system, a data-driven PI, which introduces discount factor to solve the OTCP, is implemented on an actor-critic neural network (NN) structure by only using system data rather than the exact knowledge of system dynamics. Two NNs are used in the structure to generate the optimal cost and optimal control policy, respectively, and the weights are updated by a least-square approach which minimises the residual errors. The proposed method is an off-policy RL method, where the data can be arbitrarily sampled on the state and input domain. Finally, simulation results are provided to show the effectiveness of the proposed method.
机译:在这项研究中,通过引入强化学习(RL)技术,基于数据解决了仿射非线性连续时间系统的完全未知动力学的最优跟踪控制问题(OTCP)。与OTCP的现有方法不同,所提出的数据驱动策略迭代(PI)方法不需要具有或识别任何有关系统动力学的知识,包括漂移动力学和输入动力学。为了执行所提出的方法,对原始的OTCP进行预处理,以构建由误差系统动力学和所需轨迹动力学组成的增强系统。然后,基于增强系统,仅通过使用系统数据而不是系统动力学的确切知识,就可以在基于行为者的神经网络(NN)结构上实现引入折扣因子以解决OTCP的数据驱动PI。在结构中使用两个NN分别生成最优成本和最优控制策略,并通过最小二乘方法更新权重,以最小化残留误差。所提出的方法是一种脱离策略的RL方法,其中可以在状态和输入域上任意采样数据。最后,仿真结果表明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号