首页> 外文期刊>Control Theory & Applications, IET >Hierarchical identification for multivariate Hammerstein systems by using the modified Kalman filter
【24h】

Hierarchical identification for multivariate Hammerstein systems by using the modified Kalman filter

机译:使用改进的卡尔曼滤波器对多元Hammerstein系统进行层次识别

获取原文
获取原文并翻译 | 示例

摘要

The parameter estimation problem for multi-input multi-output Hammerstein systems is considered. For the Hammerstein model to be identified, its dynamic time-invariant subsystem is described by a controlled autoregressive model with a communication delay. The modified Kalman filter (MKF) algorithm is derived to estimate the unknown intermediate variables in the system and the MKF-based recursive least squares (LS) algorithm is presented to estimate all the unknown parameters. Furthermore, the hierarchical identification is adopted to decompose the system into two fictitious subsystems: one containing the unknown parameters in the non-linear block and the other containing the unknown parameters in the linear subsystem. Then an MKF-based hierarchical LS algorithm is derived. The convergence analysis shows the performance of the presented algorithms. The numerical simulation results indicate that the proposed algorithms are effective.
机译:考虑了多输入多输出Hammerstein系统的参数估计问题。为了识别Hammerstein模型,其动态时不变子系统由具有通信延迟的受控自回归模型描述。推导了改进的卡尔曼滤波器(MKF)算法来估计系统中的未知中间变量,并提出了基于MKF的递归最小二乘(LS)算法来估计所有未知参数。此外,采用层次标识将系统分解为两个虚拟子系统:一个在非线性块中包含未知参数,另一个在线性子系统中包含未知参数。然后推导了基于MKF的分层LS算法。收敛分析表明了所提出算法的性能。数值仿真结果表明,该算法是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号