首页> 外文会议>IEEE Data Driven Control and Learning Systems Conference >Filtering Identification for Multivariate Hammerstein Systems with Coloured Noise Using Measurement Data
【24h】

Filtering Identification for Multivariate Hammerstein Systems with Coloured Noise Using Measurement Data

机译:使用测量数据对有色噪声的多变量Hammerstein系统进行滤波识别

获取原文

摘要

In this paper, based on the measurement data, the identification of the multivariate Hammerstein controlled autoregressive moving average system is investigated. To facilitate the parameter identification, the considered system is transferred to a regression identification model in which the bilinear parameter and linear parameter are included in the identification model. To solve the bilinear parameter estimation problem, with the help of the hierarchical identification principle, two new identification models are constructed in which the each model is linear to parameter vector. For each identification model, a novel filtering identification algorithm is put forward to interactively estimate the parameters of the each model based on hierarchical identification principle. Filtering technique is used to improve the estimation accuracy of the presented algorithm, and the hierarchical identification idea is exploited to decrease the calculation burden of the proposed method. The conditions of convergence are introduced by using the martingale convergence theorem. Contrast examples indicate that the proposed method has a better identification performance than several existing estimation approaches.
机译:本文基于测量数据,研究了多元Hammerstein控制的自回归移动平均系统的辨识。为了便于参数识别,所考虑的系统被转移到回归识别模型,其中双线性参数和线性参数被包括在识别模型中。为了解决双线性参数估计问题,借助分层识别原理,构造了两个新的识别模型,其中每个模型与参数向量呈线性关系。针对每个识别模型,提出了一种新颖的过滤识别算法,基于层次识别原理对每个模型的参数进行交互估计。利用滤波技术提高了算法的估计精度,并利用层次识别的思想减轻了算法的计算负担。利用the收敛定理介绍收敛的条件。对比示例表明,与几种现有的估计方法相比,该方法具有更好的识别性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号