首页> 外文期刊>Control Theory & Applications, IET >Composite anti-disturbance control for semi-Markovian jump systems with time-varying delay and generally uncertain transition rates via disturbance observer
【24h】

Composite anti-disturbance control for semi-Markovian jump systems with time-varying delay and generally uncertain transition rates via disturbance observer

机译:具有时变延迟的半市场跳跃系统的复合抗干扰控制,通过干扰观测器的过渡率通常不确定

获取原文
获取原文并翻译 | 示例

摘要

The problem of composite anti-disturbance control for semi-Markovian jump systems (S-MJSs) with time-varying delay via disturbance observer is analysed in this study. Unlike the existing methods, generally uncertain transition rates, time-varying delay, multiple disturbances, the performance and disturbance-observer-based control (DOBC) are all considered in S-MJSs. The method which combines DOBC and control is used to guarantee the system performance level of time-varying delay S-MJSs. Firstly, a sufficient condition of stochastic stability in the performance level for the composite control system is given by using piecewise Lyapunov–Krasovskii functional. Secondly, the optimal value of disturbance suppression level for the system is solved by an optimisation algorithm. Thirdly, variation interval of time-delay has been divided into equal small intervals for reducing the conservatism of the method which addresses the mode-dependent time-delay problem. Furthermore, the composite controller and disturbance observer which satisfy the proposed stability condition are designed to address the composite anti-disturbance control problem of the closed-loop system. Finally, two practical systems are provided to testify the accuracy of research methods.
机译:本研究分析了通过干扰观测器的时变延迟的半马车跳跃系统(S-MJSS)的复合抗干扰控制问题。与现有方法不同,通常不确定过渡率,时变延迟,多次干扰,<内联公式/> 基于性能和干扰观察者的控制(DOBC)都在S-MJSS中考虑。组合DOBC和的方法<内联公式/> 控制用于保证时变延迟S-MJSS的系统性能水平。首先,充分的随机稳定性条件<内联公式/> 通过使用分段Lyapunov-Krasovskii功能给出了复合控制系统的性能水平。其次,通过优化算法解决了系统的扰动抑制水平的最佳值。第三,随着时间延迟的变化间隔被分为等于的间隔,用于减少解决模式相关的时间延迟问题的方法的保守性。此外,满足所提出的稳定性条件的复合控制器和干扰观察器被设计为解决闭环系统的复合抗干扰控制问题。最后,提供了两个实际系统来证明研究方法的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号