首页> 外文期刊>IEEE Transactions on Control Systems Technology >Modeling of a plasma processing machine for semiconductor wafer etching using energy-functions-based neural networks
【24h】

Modeling of a plasma processing machine for semiconductor wafer etching using energy-functions-based neural networks

机译:使用基于能量函数的神经网络对用于半导体晶圆蚀刻的等离子处理机进行建模

获取原文
获取原文并翻译 | 示例

摘要

The complex processing of plasma etching and deposition is highly nonlinear and its modeling is intractable by analytical basic-principles techniques. Neural network approaches have shown initial success for specific plasma processes in extracting implicit relations/models based on input-output measurements. The resulting modeling techniques naturally depend on the neural structure, the adopted learning algorithms, and the specific plasma process and machine. We describe a plasma processing machine designed and in operation at Michigan State University, East Lansing, which has been equipped with select sensing devices. The machine exhibits a hysteresic nonlinearity in the desirable processing modes of operation. The experimental data characterize a testbed plasma etching process using Argon gas with control inputs including incident microwave power, pressure, and cavity size. The internal states and the outputs include reflected power, electric field, and ion density. We employ several tailored networks with novel learning algorithms derived from functions that include the polynomial and the exponential energy functions. It is shown that the learning algorithms enable fast and satisfactory convergence of parameters (weights and biases) in several scenarios of modeling and generalizing the input-state-output relations of the plasma process.
机译:等离子刻蚀和沉积的复杂过程是高度非线性的,其建模是通过分析基本原理技术难以实现的。神经网络方法已显示出特定的等离子体过程在基于输入-输出测量值提取隐式关系/模型中的初步成功。最终的建模技术自然取决于神经结构,采用的学习算法以及特定的等离子体工艺和机器。我们描述了等离子处理机,该机在东兰辛的密歇根州立大学设计并投入运行,该机已配备了精选的传感设备。机器在所需的加工操作模式下表现出迟滞非线性。实验数据表征了使用氩气和控制输入(包括入射微波功率,压力和腔体大小)进行的等离子蚀刻工艺。内部状态和输出包括反射功率,电场和离子密度。我们使用具有新颖学习算法的几种定制网络,这些学习算法是从包含多项式和指数能量函数的函数中得出的。结果表明,在对等离子过程的输入-状态-输出关系进行建模和通用化的几种情况下,学习算法可以使参数(权重和偏差)快速且令人满意地收敛。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号