首页> 外文期刊>Control Systems Technology, IEEE Transactions on >Real-Time Control of Variable Air Volume System Based on a Robust Neural Network Assisted PI Controller
【24h】

Real-Time Control of Variable Air Volume System Based on a Robust Neural Network Assisted PI Controller

机译:基于鲁棒神经网络辅助PI控制器的风量系统实时控制

获取原文
获取原文并翻译 | 示例

摘要

A neural network assisted proportional-plus-integral (PI) control strategy is proposed to improve the air pressure control performance of variable air volume (VAV) system. The neural network is trained online with a normalized training algorithm, which eliminates the requirement of a bounded regression signal to the system. To ensure the convergence of the training algorithm, an adaptive dead zone scheme is employed. Stability of the proposed control scheme is guaranteed based on the conic sector theory. To demonstrate the applicability of the proposed method, real-time tests were carried out on a pilot VAV air-conditioning system and good experimental results are obtained.
机译:提出了一种神经网络辅助比例积分控制策略,以提高变风量系统的气压控制性能。使用规范化的训练算法对神经网络进行在线训练,从而消除了对系统的有限回归信号的需求。为了确保训练算法的收敛性,采用了自适应盲区方案。基于圆锥扇形理论,可以保证所提出的控制方案的稳定性。为了证明所提方法的适用性,在试点VAV空调系统上进行了实时测试,并获得了良好的实验结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号