首页> 外文期刊>Control Systems Technology, IEEE Transactions on >Rational Basis Functions in Iterative Learning Control—With Experimental Verification on a Motion System
【24h】

Rational Basis Functions in Iterative Learning Control—With Experimental Verification on a Motion System

机译:迭代学习控制中的有理基础函数—在运动系统上进行实验验证

获取原文
获取原文并翻译 | 示例

摘要

Iterative learning control (ILC) approaches often exhibit poor extrapolation properties with respect to exogenous signals, such as setpoint variations. This brief introduces rational basis functions in ILC. Such rational basis functions have the potential to both increase performance and enhance the extrapolation properties. The key difficulty that is associated with these rational basis functions lies in a significantly more complex optimization problem when compared with using preexisting polynomial basis functions. In this brief, a new iterative optimization algorithm is proposed that enables the use of rational basis functions in ILC for single-input single-output systems. An experimental case study confirms the advantages of rational basis functions compared with preexisting results, as well as the effectiveness of the proposed iterative algorithm.
机译:迭代学习控制(ILC)方法通常相对于外源信号(例如设定值变化)表现出较差的外推特性。本简介介绍了ILC中的有理基础函数。这样的有理基础函数具有提高性能和增强外推特性的潜力。与使用已有的多项式基函数相比,与这些有理基函数相关的关键困难在于,优化问题要复杂得多。在本文中,提出了一种新的迭代优化算法,该算法使得ILC中的有理基础函数能够用于单输入单输出系统。实验案例研究证实了与已有结果相比有理基函数的优势,以及所提出的迭代算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号