首页> 外文期刊>Control Systems, IEEE >Iterative Model Identification of Nonlinear Systems of Unknown Structure: Systematic Data-Based Modeling Utilizing Design of Experiments
【24h】

Iterative Model Identification of Nonlinear Systems of Unknown Structure: Systematic Data-Based Modeling Utilizing Design of Experiments

机译:未知结构非线性系统的迭代模型识别:利用实验设计的系统数据建模

获取原文
获取原文并翻译 | 示例

摘要

High-quality models are essential to the performance of many control-related tasks [1]-[3]. If the structure of the system is known, first principle models can be created (which constitutes the best choice for most uses), especially if they should be used as design tools for parametric studies without having to build the corresponding hardware. However, first principle modeling is hardly possible for many real systems, either because the detailed knowledge of the system structure is not available or the model would be too complex to be useful for control design or to be parameterized. It has become common to use data-driven models, that is, correctly reproducing the input-output behavior of the system without trying to correctly describe its physics. For linear systems, data-driven modeling has been intensively studied, and powerful tools exist [4].
机译:高质量模型对于许多控制相关任务的性能至关重要[1] - [3]。如果该系统的结构是已知的,则可以创建第一个原理模型(这构成最符合大多数用途的最佳选择),特别是如果它们应该用作参数研究的设计工具,而无需构建相应的硬件。然而,对于许多真实系统来说,首先是可能的,因为对于系统结构的详细知识而言,或者模型对于控制设计或参数化是太复杂的。使用数据驱动的模型已经是常见的,即,正确地再现系统的输入输出行为而不尝试正确描述其物理。对于线性系统,已经集中研究了数据驱动的建模,并且存在强大的工具[4]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号