首页> 外文期刊>Control and Intelligent Systems >AN EARLY GEAR FAULT DIAGNOSIS METHOD BASED ON RLMD, HILBERT TRANSFORM AND CEPSTRUM ANALYSIS
【24h】

AN EARLY GEAR FAULT DIAGNOSIS METHOD BASED ON RLMD, HILBERT TRANSFORM AND CEPSTRUM ANALYSIS

机译:基于RLMD,Hilbert变换和综科分析的早期齿轮故障诊断方法

获取原文
获取原文并翻译 | 示例

摘要

Gear fault diagnosis requires an adaptive decomposition method to extract defect signature. As a self-adaptive approach, local mean decomposition (LMD) decomposes the signal to a set of product functions (PFs). However, LMD suffers from two limits: mode mixing and end effect. To overcome this problem, an optimized technique named "robust LMD (RLMD)" uses an integrated framework: a mirror extending method to find the real extrema in data as well as a self-adaptive tool to select the size of the fixed subset for the moving average algorithm for the envelope estimation and finally, a soft sifting stopping criterion to automatically stop the sifting process after determining the most optimum number of sifting iterations. In this article, a combination between RLMD, Hilbert transform (HT), kurtosis and cepstrum analysis is made to monitor a gearbox with chipped tooth using experimental signals. Data are first decomposed using RLMD into a couple of PFs, then HT is applied to each PF to get the envelope for every decomposed component and highlights the modulated signal related to the gear fault. Subsequently, kurtosis is applied to each envelope to obtain the kurtosis vector for each signal. As healthy vibration characteristics are always taken as a reference, in this article every faulty kurtosis vector is subtracted from the healthy vector, and the PF with the largest kurtosis difference will be selected. Finally, cepstrum analysis is applied to the selected PF to extract the fault signature. Results indicate that our method can detect the chipped tooth in an earlier stage even in a noisy environment.
机译:齿轮故障诊断需要自适应分解方法来提取缺陷签名。作为自适应方法,局部平均分解(LMD)将信号分解为一组产品功能(PFS)。然而,LMD遭受了两个限制:模式混合和最终效果。为了克服这个问题,一个名为“鲁棒lmd(rlmd)”的优化技术使用了一个集成框架:镜像扩展方法,以找到数据中的真实极值以及自适应工具,以选择固定子集的大小移动平均算法为信封估计,最后,在确定最佳筛选迭代次数之后自动停止筛选过程的软筛分停止标准。在本文中,使RLMD,Hilbert变换(HT),峰氏症和综糖分析之间的组合来监测使用实验信号用碎齿的齿轮箱。首先将数据用RLMD分解成几个PFS,然后将HT应用于每个PF以获取每个分解组件的包络,并突出显示与齿轮故障相关的调制信号。随后,施经氏症被施加到每个包膜上,以获得每个信号的Kurtosis载体。随着健康的振动特性始终作为参考,在本文中,每种错误的峰氏菌载体从健康载体中减去,并且将选择具有最大峰氏差异的PF。最后,克斯特劳分析应用于所选的PF以提取故障签名。结果表明,即使在嘈杂的环境中,我们的方法也可以在较早的阶段中检测切屑牙齿。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号