首页> 外文期刊>Concurrent engineering: research and applications >Machine learning-based design features decision support tool via customers purchasing data analysis
【24h】

Machine learning-based design features decision support tool via customers purchasing data analysis

机译:基于机器学习的设计功能通过客户购买数据分析来决策支持工具

获取原文
获取原文并翻译 | 示例

摘要

Decision-making on design features such as specifications and components is an essential aspect of new product development. Customers product preferences and their variations provide the basis of design features decision. Big data of product sales are an emerging source for the obtaining of customers preferences on product features. In this work, a machine learning-based design features decision support tool is proposed through big sales data analysis. Customers preferred product features and their combinations are predicted based on the sales data. Physical feasibility of the product features combinations is considered for customers preference analysis. Cluster analysis method is proposed to identify common and alternative design of product features. Based on specification/component relationships, design features decisions of product components are carried out by grouping product component into noncritical, common, and alternative components. A case study on electric toy cars was included to illustrate the effectiveness of the proposed method.
机译:规格和组件等设计功能的决策是新产品开发的重要方面。客户产品偏好及其变化提供了设计特征决策的基础。产品销售的大数据是获得客户对产品特征的偏好的新兴来源。在这项工作中,通过大销售数据分析提出了一种基于机器学习的设计功能决策支持工具。客户首选的产品功能及其组合基于销售数据预测。为客户偏好分析考虑了产品功能的物理可行性。建议集群分析方法确定产品特征的常见和替代设计。基于规范/组件关系,设计具有产品组件的决策通过将产品组分分组为非临界,常见和替代组件来执行。包括电动玩具汽车的案例研究以说明所提出的方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号