首页> 外文期刊>Concurrency and computation: practice and experience >Enhancement of real-time grasp detection by cascaded deep convolutional neural networks
【24h】

Enhancement of real-time grasp detection by cascaded deep convolutional neural networks

机译:通过级联深卷积神经网络提高实时掌握检测

获取原文
获取原文并翻译 | 示例

摘要

Robot grasping technology is a hot spot in robotics research. In relatively fixed industrialized scenarios, using robots to perform grabbing tasks is efficient and lasts a long time. However, in an unstructured environment, the items are diverse, the placement posture is random, and multiple objects are stacked and occluded each other, which makes it difficult for the robot to recognize the target when it is grasped and the grasp method is complicated. Therefore, we propose an accurate, real-time robot grasp detection method based on convolutional neural networks. A cascaded two-stage convolutional neural network model with course to fine position and attitude was established. The R-FCN model was used as the extraction of the candidate frame of the picking position for screening and rough angle estimation, and aiming at the insufficient accuracy of the previous methods in pose detection, an Angle-Net model is proposed to finely estimate the picking angle. Tests on the Cornell dataset and online robot experiment results show that the method can quickly calculate the optimal gripping point and posture for irregular objects with arbitrary poses and different shapes. The accuracy and real-time performance of the detection have been improved compared to previous methods.
机译:机器人抓握技术是机器人研究中的热点。在相对固定的工业化方案中,使用机器人执行抓取任务是有效的,持续很长时间。然而,在一个非结构化的环境中,物品是多样的,放置姿势是随机的,并且多个物体彼此堆叠并堵塞,这使得机器人难以在掌握时识别目标并且抓握方法复杂。因此,我们提出了一种基于卷积神经网络的准确,实时机器人掌握检测方法。建立了一个级联的两阶段卷积神经网络模型,课程成立了良好的位置和态度。使用R-FCN模型作为拾取位置的候选框架的提取,用于筛选和粗略角度估计,并且旨在以姿势检测的先前方法的不充分的精度,提出了一个角度网模型来精细估计采摘角度。康奈尔数据集和在线机器人实验结果的测试表明,该方法可以快速计算具有任意姿势和不同形状的不规则对象的最佳抓握点和姿势。与以前的方法相比,检测的准确性和实时性能已经提高。

著录项

  • 来源
    《Concurrency and computation: practice and experience》 |2021年第5期|e5976.1-e5976.9|共9页
  • 作者单位

    Wuhan Univ Sci & Technol Minist Educ Key Lab Met Equipment & Control Technol Wuhan 430081 Peoples R China;

    Wuhan Univ Sci & Technol Minist Educ Key Lab Met Equipment & Control Technol Wuhan 430081 Peoples R China|Wuhan Univ Sci & Technol Hubei Key Lab Mech Transmiss & Mfg Engn Wuhan Peoples R China;

    Wuhan Univ Sci & Technol Minist Educ Key Lab Met Equipment & Control Technol Wuhan 430081 Peoples R China;

    Wuhan Univ Sci & Technol Minist Educ Key Lab Met Equipment & Control Technol Wuhan 430081 Peoples R China|Wuhan Univ Sci & Technol Res Ctr Biomimet Robot & Intelligent Measurement Wuhan Peoples R China;

    Wuhan Univ Sci & Technol Minist Educ Key Lab Met Equipment & Control Technol Wuhan 430081 Peoples R China;

    Wuhan Univ Sci & Technol Minist Educ Key Lab Met Equipment & Control Technol Wuhan 430081 Peoples R China;

    Univ Portsmouth Sch Comp Portsmouth Hants England;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    computer vision; grasping; machine learning; robotics;

    机译:计算机愿景;抓住;机器学习;机器人学;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号