首页> 外文期刊>Concurrency and computation: practice and experience >Synthesized fault diagnosis method reasoned from rough set-neural network and evidence theory
【24h】

Synthesized fault diagnosis method reasoned from rough set-neural network and evidence theory

机译:粗糙集神经网络和证据理论的合成故障诊断方法推理

获取原文
获取原文并翻译 | 示例

摘要

When traditionalmachinery fault diagnosis methods are used to handle diagnostic problems, theproblems such as low diagnosis accuracy and bad real-time capability will arise if there are lots ofdata and various complex faults. An integrated fault diagnosis reasoning strategy based on fusingrough sets, neural network, and evidence theory is presented using the principles of data fusionand meta-synthesis. Firstly, use the the parallel neural network structure to improve diagnosisability of the local diagnosis networks; preprocess the data with rough set theory to simplify thecomplex neural networks; and eliminate redundant properties in order to determine the topologicalstructure of network. By this way, the shortcomings of network, such as large scale and slowclassification, can be overcome. Secondly, a new objectified method of basic probability assignmentisgiven.Besides, the accuracyandefficiencyof thefaultdiagnosis canbe improvedobviouslyaccording to the various redundant and complementary fault information by using the combinationrule of the evidence theory to synthesize andmake decisions on the evidence. The example ofrotatingmachinery diagnostic given in the paper proves the method to be feasible and available.
机译:当传统机械故障诊断方法用于处理诊断问题时,如果有很多人,则会出现低诊断精度和低实时能力等问题数据和各种复杂故障。基于融合的综合故障诊断推理策略使用数据融合原理提出了粗糙集,神经网络和证据理论和荟萃合成。首先,使用并行神经网络结构来改善诊断本地诊断网络的能力;用粗糙集理论预处理数据以简化复杂的神经网络;并消除冗余属性以确定拓扑网络结构。通过这种方式,网络的缺点,如大规模和慢速分类,可以克服。其次,基本概率分配的新客观方法给予。基于Besides,DeaultDiagnosis的精确效率均致力于根据各种冗余和互补故障信息使用组合证据理论的规则综合证据的决策。这个例子本文中给出的旋转机械诊断证明了该方法可行和可用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号