首页> 外文期刊>Concurrency and computation: practice and experience >Synthesized fault diagnosis method reasoned from rough set-neural network and evidence theory
【24h】

Synthesized fault diagnosis method reasoned from rough set-neural network and evidence theory

机译:基于粗糙集神经网络和证据理论的综合故障诊断方法

获取原文
获取原文并翻译 | 示例

摘要

When traditionalmachinery fault diagnosis methods are used to handle diagnostic problems, theproblems such as low diagnosis accuracy and bad real-time capability will arise if there are lots ofdata and various complex faults. An integrated fault diagnosis reasoning strategy based on fusingrough sets, neural network, and evidence theory is presented using the principles of data fusionand meta-synthesis. Firstly, use the the parallel neural network structure to improve diagnosisability of the local diagnosis networks; preprocess the data with rough set theory to simplify thecomplex neural networks; and eliminate redundant properties in order to determine the topologicalstructure of network. By this way, the shortcomings of network, such as large scale and slowclassification, can be overcome. Secondly, a new objectified method of basic probability assignmentisgiven.Besides, the accuracyandefficiencyof thefaultdiagnosis canbe improvedobviouslyaccording to the various redundant and complementary fault information by using the combinationrule of the evidence theory to synthesize andmake decisions on the evidence. The example ofrotatingmachinery diagnostic given in the paper proves the method to be feasible and available.
机译:当使用传统的机械故障诊断方法来处理诊断问题时,如果存在大量的数据和各种复杂的故障,则会出现诸如诊断准确性低和实时性差的问题。提出了一种基于融合粗糙集,神经网络和证据理论的故障综合诊断推理策略。首先,利用并行神经网络结构提高局部诊断网络的诊断能力。使用粗糙集理论对数据进行预处理,以简化复杂的神经网络;并消除冗余属性,以确定网络的拓扑结构。这样,可以克服网络规模大,分类慢等缺点。其次,提出了一种新的客观的基本概率分配方法。特价多拼互补“ ” “ ” “ ” “ 根据证据。本文给出的 r n旋转机械诊断实例证明了该方法的可行性和实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号