首页> 外文期刊>Concurrency, practice and experience >Research on joint ranking recommendation model based on Markov chain
【24h】

Research on joint ranking recommendation model based on Markov chain

机译:基于马尔可夫链的联合排名推荐模型研究

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a supervised learning framework with strong expansibility is first established for search engine joint ranking problem. It can transform existing algorithms into corresponding learning algorithms, and design new algorithms under this framework. Second, with Markov chain model as the core algorithm, this paper combines the ranking results of three main factors, including content relevance, hyperlink prediction, and query click behavior, and transforms the joint problem of ranking results into a positive semi-definite programming problem, and deduces the detailed process of solving the problem. Finally, this paper analyzes the rationality and efficiency of the joint ranking recommendation model based on Markov chain by setting the weight coefficient through experimental data.
机译:本文首先针对搜索引擎联合排名问题建立了一种具有较强可扩展性的监督学习框架。它可以将现有算法转换为相应的学习算法,并在此框架下设计新算法。其次,以马尔可夫链模型为核心算法,结合内容相关性,超链接预测和查询点击行为三个主要因素的排名结果,将排名结果的联合问题转化为正半定规划问题。 ,并推导解决问题的详细过程。最后,通过实验数据设置权重系数,分析了基于马尔可夫链的联合排名推荐模型的合理性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号